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SiallSCM: a nation-wide tool for milking monitoring to 
enhance efficiency and welfare of Italian dairy animals

L. Pascarella1,2, C. Melilli 1, M.P.G. Rezende1, M. Fioretti1 and R.. Negrini1,2

1Associazione Italiana Allevatori, via XXIV Maggio 44, Rome, Italy
2Dipartimento di Scienze animali, della nutrizione e degli alimenti, Università Cattolica 

del Sacro Cuore, Via E. Parmense, 29122 Piacenza, Italy 
Corresponding Author: pascarella.l@aia.it

The development of milking machines began in the late 19th century. Over the decades, 
the field of milking technology experienced significant improvements in performance, 
culminating in the complete automation of the milking process whit the advent of 
Automatic Milking Systems (AMS). Still nowadays, despite these advancements, the 
well-documented consequences of inconsistent milking due to improper functioning 
of milking machine continue to impact the udder health of dairy cows and hinder the 
competitiveness of farm. For example, poorly adjusted machine milking can contribute 
to the incidence of mastitis acting as vector of bacteria or causing traumas. Milking 
machine processes, including the equipment washing and cleaning can also influence 
milk quality diminishing its cheese yield potential. In conclusion, monitoring the milking 
process through data helps optimize labour time, which typically accounts for over 50% 
of the total labour input in the milking parlour.

Since 1970, the Italian DHI (AIA) has established and operated a national service 
called Milking Control Service (SCM). More than 100 highly skilled technicians serve 
within the SCM framework, with their distribution strategically aligned to the regional 
concentration of dairy farms. They are equipped with instruments to carry-out the dry 
test (flowmeter, pulsameter, vacuum gauge, etc). Equipment also includes VaDia® 

kit (Biocontrol, Rakkestad, Norway) and Lactocorders® (WMB AG, Balgach, CH). 
The SCM service operate in compliance with ISO standards 3918:2007, 5707:2007, 
6690:2007 and 11008:2002.

SCM technicians assess the efficiency of milking systems through both dry tests 
(conducted without animals) and wet tests (performed with animals). Based on the 
test results, they calibrate the milking equipment, establish an effective milking routine, 
optimize the cleaning process and ensure the efficiency of milk cooling tank. Finally, 
in line with ICAR guidelines for DHI, the technicians ensure that the devices used for 
milk performance recording are functioning correctly. Those services will be further 
enhanced leveraging all herd available data and employing cutting-edge milking 
sensors. While milking technologies and devices efficiently generate massive and 
accurate information both on milking systems and animals, the real challenge lies in 
developing standardized methods for recording, organizing, and normalising this data 
and extract meaningful and ready-to-use information for farmers and technicians. To 
address this challenge, AIA developed a comprehensive procedure for monitoring 
the milking process and has engineered a software solution called SiallSCM. This 
system is designed to collect data, assist SCM technicians, and provide farmers with 
valuable tools to improve the efficiency and effectiveness of their milking operations. 
By integrating this solution with herd data and advanced milking sensors, AIA ensures 
a seamless approach to optimizing performance.

Introduction
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The SiallSCM app is developed using Python 3.11.7, with the code written in the 
Spyder IDE. Spyder is an integrated development environment tailored for Python 
programming. In the development process, we utilized the CustomTkinter package, 
specifically its CTk() function, to create the main application window that gives users 
access to all available tools. Upon selecting a tool, corresponding child windows are 
displayed. The app incorporates various widgets and classes from the CustomTkinter 
package, including CTkButton, CTkLabel, CTkFrame, CTkToplevel, CTkRadiobutton, 
CTkCheckBox, CTkTextBox, and CTkEntry, to build the interface.

Each tool in the app is nested within its own class, which contains the functionality 
specific to that tool. Additionally, we create a main class that imports all the tool 
classes and assembles the complete GUI application. The project’s file structure 
is neatly organized into three primary sections: data, GUI, and testing. The testing 
process was divided into several key steps: network testing (synchronization with 
the API), authentication, file sorting, data compilation and transmission to the central 
database, clearing the bin, and locating or extracting information from the database. 
The evaluation metrics used to assess performance included CPU utilization, memory 
utilization, and response time. 

The Python script was then converted into an executable file. PyInstaller was used to 
bundle the Python application along with all its dependencies into a single package, 
allowing users to run the application without needing to install a Python interpreter or 
any additional modules. This packaged app can be run on both Windows and Linux 
operating systems, and it does not require an Internet connection for use.

The communication and data synchronization between the SiallSCM graphical interface 
and the AIA central database (SQL) is trough APIs. The communication framework is 
organized into six key API sets: user management, authentication, farm data extraction 
(retrieving general farm information from AIA’s database), catalogue data extraction 
(including lists of milking machine types, models, and equipment), milking system 
configuration, and types of milking control.

When SCM technician logs-in with a personal password, a user token is generated, 
validating all synchronization activities (Figure 1), and identifying the technician’s 
operational area, granting access to all farms within that area. Exceptions can be 
configured as needed. After successful logging in, the specific API allows the local 
storage of all machine systems and equipment catalogues in a JSON file.

The next step involves planning configuration and milking control activities. In this phase, 
the farm API is used to retrieve information on previously completed and synchronized 
activities, as well as the forecast for adding a new service. 

At this stage, the user can enter all data and information related to the scheduled tests 
into the APP tables, with the flexibility to work both online and offline. Once data entry 
is completed, the APIs synchronize the data with the central database.

The AIA’ R&D department conducted a comprehensive analysis to anticipate potential 
areas of information and data acquisition related to milking machines configuration, 
setting parameters and milking tests.

The procedure follows a farm-specific approach, allowing for the collection of all tests 
and information at farm level. After selecting a farm, the first step in data entry involves 
configuring the complete milking system and its equipment (Figure 2) filling specific 
masks on:

•	 Farm general information (species, type of milking machine, etc).

•	 Milking system general information (number of claws, dimensions, etc).

The App SiallSCM
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•	 Vacuum system (milking pump type, model and characteristics, vacuum pipelines 
	 dimensions, etc).

•	 Milk system (milk pipeline dimensions and characteristics, milk receiver, etc).

•	 Cleaning and washing system.

•	 Milking units (type of tubes, material, claws model, liners, etc).

•	 Pulsation systems (type, model and settings of pulsators).

•	 Recording device (type, model and number, if present).

Specific input forms are developed for entering data based on the specific milking test 
selected (Figure 3)

SiallSCM facilitate the data entry and analysis of the following tests. Data entry is 
controlled by the input field, restriction which is configured to accept strings of number 
of specific length and composition according with the parameter being entered.

•	 Dry test (not under milking conditions): this test includes a physical assessment 
of the milking machine and the measurement of vacuum capacity at appropriate 
points, vacuum gauge accuracy, milk system leakage;

•	 Wet test (under milking conditions): the test evaluates the performances of the 
milking machine and the interaction between cow, milker and the machine. It 
includes precise measurements of vacuum levels at the claw, the liners, and the 
accurate monitoring of milk flows during different phases of milking. 

Figure 1. Authentication 
of SiallSCM.

    
 
Figure 1. Authentication of SiallSCM. 
 
 
  

Figure 2. Milking system configuration.

 

 
 

Figure 2. Milking system configuration. 
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•	 Fall-of test: it assesses whether the system has enough airflow capacity to cope 
with a unit fall-off.

•	 Pulsation test: this test check whether the pulsator is correctly calibrated and ensure 
it remain consistent by monitoring various pulsation parameters and phases.

Table 1 shows the main parameters that can be collected for each test. 

When used on-line, all tests’ data and milking systems information are synchronized 
in real-time with the central AIA database and integrated with the DHI data, following 
two-tier normalization process. 

The first tier of normalization ensures that data gathering complies with ISO standards 
by following official operative protocols. Additionally, the data gathering is validated 
using SCM’ instruments and milking devices, which are officially calibrated at least 
once a year. The second tier applies a set of thresholds, from UNI-ISO standards, and 
algorithms to identify and flag any aberrant or outlier data entries. 

Once the data has been processed and merged in the central database, it can be 
retrieved by the front-end application to generate dynamic, easy-to-read farm reports.

Figure 3. SiallSCM panel to initialize the selected test (left). Data entry mask for pulsation parameters 
and pump (right).
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Figure 4. Data and information flow of SiallSCM procedure.
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During the inaugural campaign of SiallSCM, held between September 2022 and 
April 2024, more than 500.000 milking machine milking machines configuration and 
setting parameters were acquired and about 25.000 pulsation tests were conducted on 
1.255 farms by 56 SCM technicians. In addition, in the same timeframe, 4.348 milking 
wet test were performed involving 160.000 lactating animals and fall-of tests were 
carried in 398 farms. Finally, 2.374 data streams were uploaded from Lactocorder 
and Vadia direct link.

The tool and services potential spans the whole set of farms subscribed to DHI 
encompassing more than 15 thousand dairy farms and 1,5 million of heads (Table 2)

Data visualization and reporting is performed using Microsoft Power BI, a business 
intelligence tool developed by Microsoft, which enables interactive data dashboards 
and reporting. The SCM central office conduct a weekly review these statistics weekly 
to monitor the SiallSCM data flow by farm, type of milking test, and SCM technician 
(Figure 5).

 
Test Parameters 

Dry test 
working vacuum (kpa), effective reserve of milking (l/min), regulation 
sensitivity (kpa), vacuum pump airflow (l/min), airflow at vacuum 
and/or milk pipelines (l/m). 

Wet test 
claw vacuum during peak flow (kpa), bimodality, claw vacuum drop 
(kpa), milk flow during peak (kg/min), overmilking (min), milk yield 
overmilking (kg), overmilking (min), milking flows (kg/min). 

Fall-off test 
avg vacuum phase 1 (kpa), undershoot(kpa), vacuum drop(kpa), 
overshoot(kpa), avg vacuum phase 2(kpa), avg vacuum phase 4 
(kpa). 

Pulsation test frequency (bpm), ratio (%), limping (%), dipping (kpa),  
a, b, c, d phases of pulsator (% and ms). 

 
  

Table 1. Main parameters recorded per SCM test.

Results and 
discussion

Data collected 
through the app

Figure 5. SiallSCM Power BI dashboards. Type of test per technician code (left). Farm tested per 
region (right).
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The limited understanding of buffalo udder physiology and optimal milking parameters 
prompted to utilize the SiallSCM dataset. The study aimed to investigate the influence 
of different milking conditions on milk quality traits and define the most appropriate 
milking machine parameters.

Milking machine configuration information and Dry test parameters (working vacuum, 
pulsation rate, effective vacuum reserve) were modelized together with official DHI 
data through a mixed linear model. 

The preliminary analysis showed a direct relation between LS and the working vacuum 
level (Table 3). A higher pulsation rate (70:30) was responsible for significantly 
(P < 0.001) lower LS and higher FP compared to a 60:40 pulsation rate (Table 4). The 
presence of automatic cluster removal showed a significant effect (P < 0.001) on fat 
and milk yield and a slight (P < 0.05) reduction in LS. 

Furthermore, a multivariate analysis revealed that different types of systems had 
different effect on milk quality and quantity traits. Notably, somatic cell counts (LS) was 
lower when a herringbone system was used compared to tandem system.

Results emphasized that buffaloes have specific requirements for milking parameters 
and incorrect setting can lead to an increase in somatic cell count and a reduction in 
lactose levels. In this study, we evaluate 10 different types of milking systems. 

We also gathered preliminary finding using data from Lactocorders connected to the 
SiallSCM system. This analysis involved a sample of approximately 3,000 Italian 
Holstein cows and focused on three key parameters: vacuum level at the milking 
cluster, grouped into four classes; peak milk flow sustained over one minute; and total 

Table 2. Numbers of farms, milking systems and lactating animals involved in Milking 
Control Service of AIA Source: A.I.A. (http://bollettino.aia.it) 

 
Table 2. Least square means ± standard error of milk characteristics for working vacuum classes. 
 

 
 
  

Preliminary results 
on Buffaloes and 
Holstein

Table 1. Numbers of farms, milking systems and lactating animals involved in Milking Control Service of AIA  
Source: A.I.A. (http://bollettino.aia.it) 
 
 

Species n° of farms 
n° of milking  

systems 
n° of lactating  

heads 
Average heads  

per farm 

Bovine 14,007 23,812 1,407,368 100.5 

Ovine 833 953 127,427 152.9 

Goat 395 512 36,498 92.4 

Buffaloes 346 588 74,299 214.7 

Total 15.581 25.865 1.645.592   
 
 
  Table 3. Least square means ± standard error of milk 
characteristics for working vacuum classes.

http://bollettino.aia.it
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milking duration. The data analysis indicates an inverse relationship between vacuum 
class and average milk flow (Figure 6, right). However, the total milking duration 
remains consistent across all vacuum classes ranging from 6.5 minutes for class 1 to 
6.8 minutes for class 4 (Figure 6, left). These results suggest that the common practice 
of increasing vacuum levels to speed up milking may not be efficient. Lower vacuum 
levels likely reduce stress on the animals, creating optimal physiological conditions 
that allow for greater milk release within the same time frame.

The SiallSCM tool, with its capacity to collect and structure vast amounts of data, 
provides valuable insights for improving milking management across a wide range 
of farm types.

The design of the SiallSCM app facilitates farm-specific data management, offering 
key information for improving milking management, milk quality, and overall economic 
competitiveness. Additionally, the app unlocks broader possibilities, as the study and 
identification of negative impacts associated with milking processes. In-depth analysis 
of the large dataset can uncover critical insight on animal susceptibility to specific 

Table 4. Least square means ± standard error of milk 
characteristics for working vacuum classes.Table 3. Least square means ± standard error of milk characteristics for working vacuum classes. 
 

 
 
  

Figure 6. Max milk flow in one minute per class of vacuum (left). Milking time per class of vacuum (right).
  

Figure 5. Max milk flow in one minute per class of vacuum (left). Milking time per class of vacuum (right). 
 

Conclusions
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equipment settings or management practices, supporting farms and their advisors in 
optimizing both performance and welfare.

Further implementation of SiallSCM will expand its capabilities, including data and 
information collection related to milking routines and management, and the development 
of meaningful reports.

A.I.A. Bollettino OnLine Controlli sulla Produttività del Latte - 
2022/2023 (Official milk performance recording results). 
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The calving season is a compact period concentrated in the first 3 months of the 
year for three quarters of the 1.6 million national dairy cows in Ireland. Many of the 
resulting dairy-beef sired calves are sold off farm before the calf reaches 6-weeks of 
age whereby after that age a Tuberculosis test is necessary for sale. The abundance of 
these animals frequently results in market saturation, presenting challenges for sellers. 
Conversely, determining which animals will yield the greatest profit for subsequent 
buyers poses its own difficulties, as buyers face a gamble due to the absence of 
distinct visual disparities between young animals. The introduction of the Commercial 
Beef Value (CBV) by the Irish Cattle Breeding Federation (ICBF) marks a significant 
advancement in the dairy-beef industry in Ireland. This index addresses the challenge 
of assessing the profit potential of non-breeding beef animals, particularly calves sold 
off-farm before six weeks of age. The CBV contributes to;;

1.	 Genetic potential assessment: The CBV incorporates genetic factors related to 
intake, growth, docility, and carcass traits. This allows purchasers to make more 
informed decisions regarding the profit potential of individual calves.

2.	 2. Decision support tool: The CBV serves as a decision support tool for farmers, 
helping them evaluate the performance and value of calves beyond what is visually 
apparent at a young age.

3.	 3. Improved predictability: By providing more reliable information and predictability, 
the CBV enhances the purchasing process and encourages breeders to focus on 
producing higher-quality beef stock.

4.	 4. Integration with existing systems: The CBV complements the existing Dairy-
Beef Index (DBI), providing a comprehensive set of tools for both breeders and 
purchasers to evaluate animals’ genetic potential.

5.	 5. Environmental impact: Finishing animals at a younger age not only increases 
efficiency but also reduces environmental impact by consuming less feed and 
emitting fewer greenhouse gases over their lifetime.

6.	 6. Genotype verification: Animals eligible for the CBV must undergo parentage 
verification through genotyping, ensuring the accuracy and reliability of the index.

7.	 7. Availability in auction houses: The CBV is accessible through digital screens in 
auction houses, making it readily available to purchasers.

Overall, the introduction of the CBV represents a significant step forward in the 
dairy-beef industry, providing tangible benefits to both purchasers and breeders. 
By leveraging genetic information and technology, stakeholders can make more 

Abstract
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informed decisions, ultimately driving improvements in animal quality, profitability, and 
environmental sustainability.

Keywords: dairy-beef, genetics, carcass. 
Presented at the ICAR Anual Conference 2024 in Bled at the Session 1a: Decision 
Support Tools of the Future – Promoting Sustainability Farm Management

In Ireland, three quarters of the 1.6 million dairy cows calve within the first three months 
of the year. In recent years, there has been a notable rise in the numbers of dairy-beef 
animals, yet simultaneously, a concerning decline in their carcass conformation scores 
has emerged. Historically, beef farmers lacked important information regarding the 
genetic quality of these progenies from dairy origins. However, the introduction of the 
CBV (Commercial Beef Value) has addressed this gap, empowering beef farmers with 
crucial insights for informed purchasing decisions, regardless of the animal’s age. This 
tool holds significant potential to instigate tangible transformations within the industry, 
provided that beef farmers leverage this information in their procurement processes 
and that breeders of such animals respond effectively to industry demands.

Since 2017, beef calvings have accounted for approximately 40% of the overall dairy 
calvings. Nevertheless, this pattern has shifted in the past two years, witnessing a 
noticeable increase in the birth of calves sired by beef bulls within the dairy herd (Figure 
1). Remarkably, this year marks the first instance where the number of beef calves 
born from dairy cows has surpassed the number of dairy calves born from dairy cows 
after the peak spring calving season. This trend also indicates that dairy farmers are 
increasingly using beef sires earlier in the breeding season.

The rise in dairy-beef offspring has led to a decline in dairy male calves, largely due 
to the use of sexed semen, which reduces both male births and the need for dairy 
females. Figure 2 compares this trend between 2020 and 2024 (up to April 20th). As 
this shift continues, following global patterns, the dairy male segment is expected to 
keep shrinking, with beef-on-dairy offspring filling the gap. This increase in dairy-beef 
calves offers beef rearers more choices, potentially leading to more profitable animals. 
The key question is whether these calves are improving in quality and becoming more 
cost-effective to rear.

The CBV, or Commercial Beef Value, is a tool for gauging the quality and anticipated 
profitability of non-breeding animals. 

The CBV offers farmers valuable insights into the genetic worth of their animals, 
encompassing traits important only for non-breeding farming, such as carcass weight, 
conformation, and feed intake (Figure 3). Similar to the EBI and Euro-Star Indexes, 
CBV is denoted as a €uro value. A higher €uro value signifies superior genetic merit 
across the included traits. Having the CBV available will allow farmers to make more 
informed decisions when purchasing or selling animals. Genotyped animals being 
traded through auction houses will have their CBV displayed on digital boards. When 
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Figure 1. Number of calvings by April 20th each year for dairy and beef sired 
progeny in the dairy herd.

Figure 2. Proportion of dairy male, dairy female and beef from dairy offspring for spring calving up to 
April 20th for each year, 2020 and 2024.
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Figure 2. Proportion of dairy male, dairy female and beef from dairy offspring for spring calving up to April 
20th for each year, 2020 and 2024. 
  

Figure 3. The Commercial Beef Value.
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engaging in farm-to-farm sales, purchasers can request the seller’s CBV profile which 
can be obtained via their ICBF Herdplus account. The beef merit of calves can vary 
significantly even within the same breeds (Table 1). 

Analysis using the data from the ICBF national database shows that calves sired by beef 
bulls with higher genetic merit achieve better carcass weights, conformation, and are 
more likely to meet factory specifications than those sired by lower-merit bulls (Table 2).

Dairy steers showed only a €43 difference in calf purchase price between the bottom 
and top 10%. However, top CBV steers finished 16 days earlier and earned €275 
more on finishing price. Angus crosses had even greater differences, with high CBV 
animals finishing 54 days sooner. Since CBV impacts the animal’s entire life, beef 
finishers can use this tool to evaluate quality and efficiency when purchasing calves, 
weanlings, or store cattle.

Table 1. CBV values by breed for 2024 born dairy-beef calves (source www.icbf.com).
 
Table 1: CBV values by breed for 2024 born dairy-beef calves (source www.icbf.com). 
 

 
 
  

Table 2. Calf price, finishing price and finishing age for A) dairy × dairy steers and B) Angus 
× dairy steers finished in 2023 by CBV decile.

 
Table 2. Calf price, finishing price and finishing age for A) dairy × dairy steers and B) Angus × dairy steers 
finished in 2023 by CBV decile. 
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The National Genotyping Programme (NGP) was launched in Ireland in 2024 with 
the aim of establishing a fully genotyped national dairy and beef herd. This initiative 
involves the genotyping of all calves born in the participating herds at birth. The 
genotype results are integrated into the national calf registration system through the 
DNA calf registration process. There is a significant benefit to farmers and the industry 
as inaccuracies in the recorded dam, sire and sex of each calf can be corrected before 
the bovine passport has been issued. In NGP herds this year, over 93% of all calves 
born have been verified to a sire. This provides more accurate CBV values and buyers 
can buy with confidence that the animal has been registered to the correct parents and 
their genetic merit potential has increased in accuracy. However, the overall quality of 
the population is one that needs some further scrutiny. 

To improve the CBV quality of beef progeny from the dairy herd, dairy farmers can use 
the Dairy Beef Index (DBI) breeding index to select beef bulls that will produce calves 
suitable for beef production while also maintaining desirable calving traits. The index 
consists of three sub-indices; Calving, Beef and Carbon (Figure 4). 

Traits such as gestation, calving difficulty and mortality contribute to the Calving sub-
index. Trends indicate that dairy farmers are increasingly prioritizing favourable calving 
traits and are making consistent advancements in this aspect annually. However, in 
the Beef sub-index, which encompasses traits like carcass weight, conformation, and 
feed intake, progress appears to be less pronounced (Figure 5). 

The quality of dairy-beef animals, as measured by the CBV, has slightly declined since 
2015. Between 2017 and 2022, the trend remained relatively stagnant, however, the 
last two years have seen a decline in CBV scores (Figure 6). This period also saw 
more dairy herds using beef sires and more dairy cows bred to beef sires. Trying 
to disentangle why the CBV values have declined is difficult and not all herds have 
witnessed a decline. For example, dairy herds consistently using beef sires have 

The National 
Genotyping 
Programme

The Dairy Beef 
Index

Figure 4. Dairy Beef Index (DBI) composition.
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Figure 5. Genetic trend for calving traits (gestation and calving ease) and beef traits (carcass weight 
and age at finish) by year of birth and by breed.
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Figure 6. Trend in CBV for dairy beef and dairy male animals
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generally seen annual improvements in dairy-beef calf quality, except for this year, 
although data is incomplete (Figure 7). 
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Breeding for higher beef quality traits is possible through careful selection of dairy-beef 
bulls on their DBI. Dairy farmers should opt for bulls with high beef sub-index values in 
the DBI as this is necessary for fostering improvements in calf quality. Beef producers 
play a pivotal role in expediting this progress by leveraging the CBV to inform their 
purchasing choices. The CBV stands as a catalyst for driving essential improvements 
in dairy-beef animal quality. Every industry stakeholder – from bull breeders to AI 
companies, farmers selecting bulls and those that raise the subsequent progeny, 
advisors, researchers and ICBF – all play a vital role in driving this change.

Figure 7. CBV by year of birth for dairy herds that consistently used beef on dairy 
(>25% calves dairy-beef in 2018 and remain so in 2024).
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HeiferHub – A decision support tool to forecast  
sales of beef calves and future heifer replacements

R.H. Fourdraine and J.S. Clay

Dairy Records Management Systems, 313 Chapanoke Road,  
Suite 100, Raleigh, NC 27603, USA

Utilizing the combined breeding, calving, culling and calf data, DRMS build a web 
based tool called HeiferHub. HeiferHub uses the various input variables necessary to 
forecast the number of available dairy replacement animals approximately 34 months 
from breeding. Expected number of dairy replacement animals are compared against 
the anticipated need of replacements and informs the producer if there is a shortage. 
In addition, it provides an economic analysis that projects the estimated costs in semen 
and revenue generated from selling excess female dairy calves, dairy bull calves and 
dairy x beef cross calves. 

Users can compare different breeding strategies but also analyze the impact on number 
of future replacements based on making management improvements. One example 
of this would be the anticipated extra revenue from selling dairy x beef cross calves if 
the farm builds a new calf facility and lowers calf losses. 

HeiferHub provides a valuable tool that takes the guesswork out of making breeding 
decisions and makes a complex process much easier to manage.

Keywords: Fourdraine, breeding, forecast, beef, heifer, replacements 
Presented at the ICAR Anual Conference 2024 in Bled at the Session Session 1a: 
Decision Support Tools of the Future – Promoting Sustainability Farm Management

Historically, the process of maintaining the preferred milking and replacement herd 
size was relatively simple. Cows were bred exclusively to dairy semen and typically the 
number of female calves generated would be adequate to ensure that enough animals 
would be available to replace those that left the herd for either voluntary or involuntary 
reasons. Excess heifer inventories and dairy bull calves would be sold at market prices.

Since the introduction of breeding dairy cows with AI beef bulls and the availability of 
sexed semen to create more dairy replacements, the decisions surrounding the number 
of cows to breed to the various types of semen has become more complex. U.S. dairy 
farmers can sell a dairy x beef cross calf for a significantly higher price than a dairy bull 
calf. Producers have reported revenues for a single cross bred calf in the range of 200 
to 800 dollars while dairy bull calves would typically generate less than 100 dollars. 
This provides a significant additional source of revenue for dairy producers, especially 
in times when milk prices are low. To seize on this opportunity, dairy farmers have 
increased the number of animals bred to AI beef sires. In addition, they have reduced 
the number of animals bred to conventional dairy semen and increased the number of 
animals bred to dairy sexed semen to ensure enough replacements are available in the 
future. The math can be complicated because there are many factors to consider post 
breeding – to include conception rates, pregnancy losses, stillbirths, heifer losses and 
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level of involuntary culling. Combining the impact of all these factors can dramatically 
impact the final number of replacements available 34 months from when the cows are 
bred. Dairy farmers typically track conception and pregnancy losses. But it is more 
complicated to obtain information about calf losses and stillbirths, for example, from 
on farm management software and it requires access and summarization of historic 
records that typically are not retained on farm. Therefore, dairy farmers make their 
best guess which in some cases has led to either an excess or shortage of dairy 
replacements. When a shortage occurs, the dairy has to find suitable replacements 
typically at a higher price and genetically lower quality and assume the risk of disease 
exposure. Current heifer purchase prices range between $2,400 and $3,500 so there 
is a significant economic incentive not to be short on replacements. 

The financial incentive is clear, however the problem at hand for many producers is: 
“How do I maximize my returns while breeding the maximum number of cows to AI 
beef bulls while also ensuring enough replacement animals?” This paper will provide 
an overview of a new and exciting web based decision support tool named HeiferHub 
offered by DRMS that takes the guesswork out of making breeding decisions, maximizes 
future returns and ensure the farm has enough replacement animals. 

Using DRMS breeding data, the annual trend for number of breedings by semen type 
continues to be more breedings to beef and sexed dairy semen and less breedings 
with conventional dairy semen. Figure 1 shows March 2024 DRMS breeding data 
separated by semen type. When compared to the same month in 2023, conventional 
dairy semen usage dropped from 45% to 40%, sexed dairy semen is up 1% and beef 
semen is up 4% from the prior year. 

The data shown in Table 1 represents the 2023 overall breeding trend based on data 
from more than 9200 dairy farms. However there are significant differences between 
herds. Evaluating a single farm’s data can provide valuable insights about the current 
breeding program and adjustments that have been made over time. Figures 2 and 3 

A new reality

 

Figure 1. DRMS March 2024 semen distribution by semen type (Source: DRMS). 
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Figure 1. DRMS March 2024 semen distribution by semen type (Source: DRMS)
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Figure 1. DRMS March 2024 semen distribution by semen type (Source: DRMS).

Figure 2. Percent of cows bred by semen type and month (Source: DRMS HerdHQ)
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Figure 3. Percent of heifers bred by semen type and month (Source: DRMS HerdHQ). 
  

 

Figure 1. DRMS March 2024 semen distribution by semen type (Source: DRMS). 
 

Table 1. DRMS 2023 Numbers of breedings by lactation, service number and semen type (Source: DRMS) 
 

 Service # % Beef % HO Conv % HO Sexed % Jersey 

Heifer 
1 3.8% 31.3% 63.7% 1.2% 
2 6.3% 33.1% 59.4% 1.2% 
3 30.5% 37.5% 30.7% 1.3% 

1st Lact 
1 13.9% 51.5% 32.8% 1.8% 
2 21.9% 52.0% 24.7% 1.3% 
3 45.9% 45.3% 8.1% 0.7% 

2nd Lact 
1 26.0% 52.4% 19.9% 1.6% 
2 34.4% 51.1% 13.6% 1.0% 
3 51.5% 43.7% 4.3% 0.6% 

3+ Lact 
1 41.3% 47.2% 10.8% 0.7% 
2 46.3% 45.2% 7.8% 0.6% 
3 57.7% 38.6% 3.1% 0.6% 

 Service # % Beef % HO Conv % HO Sexed % Jersey 

All Lact + 
Heifers 

1 22.0% 45.7% 31.0% 1.3% 
2 29.7% 46.1% 23.2% 1.0% 
3 49.6% 41.6% 8.2% 0.7% 

 
  

Beef Total
34%

Dairy Conv.
40%

Dairy Sexed
26%

show a single herd’s breeding trend based on semen type for the milking cows and 
heifers respectively. 

Based on the data shown in Figures 2 and 3, the farm made a significant change 
in March 2023. The staff stopped breeding cows to conventional dairy semen while 
dramatically increasing the use of beef semen to breed cows. To offset the reduction 
in dairy replacement animals, they increased the use of sexed dairy semen on some of 
the cows but more so on the dairy heifers. The number of replacement animals resulting 
from these decisions will not be known until calves are born and reach breeding age 
and subsequent calving. 
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In addition to the change in breeding strategy, one can also determine the variation in 
number of animals bred each month which in turn adds more variability to the number 
of available replacements in the future. 

Consistency in producing the right number of replacements each month is an important 
consideration as well. Factors that will determine how many replacement animals are 
available in the future are:

●	 Conception Rate.

●	 Pregnancy loss.

●	 Stillbirth.

●	 Calf loss.

●	 Heifer losses (between birth to calving).

●	 Age at Calving.

These numbers can vary throughout the year. For example, summer heat can negatively 
impact conception rates and pregnancy losses while winter cold and humidity can 
negatively impact stillbirths and calf losses. Figure 4 shows projected calvings for the 
same herd over the next 8 months. Quite a lot of variation is expected in the projected 
number of replacement dairy calves. In May 2024, the projected number of dairy 
replacement calves born is more than twice as the prediction for June 2024. Typically, 
farmers will evaluate the projected number of replacement calves born from month 
to month and subsequently adjust the percentages of animals bred to each semen 
type. Using historic data allows the farmer to determine patterns in effects such as 
conception rates and pregnancy losses to enable him to proactively select the correct 
number of animals to breed to the various semen types. 

Figure 3. Percent of heifers bred by semen type and month (Source: DRMS HerdHQ)

 

 
 
Figure 2. Percent of cows bred by semen type and month (Source: DRMS HerdHQ). 
 
 
 

 
 
Figure 3. Percent of heifers bred by semen type and month (Source: DRMS HerdHQ). 
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The primary concept of HeiferHub is to use common understandings about biological 
facts and apply simple math to create predictions. The starting points are 

1.	 required number of replacements as affected by yearly voluntary and involuntary 
culling rates, 

2.	 number of animals to be bred in the upcoming month or week and 

3.	 percent of animals bred to each semen type. 

The next step in the process is to project the number of pregnancies, live calves born, 
and calves that will become pregnant and survive to calve themselves. This step takes 
into account conception rates, pregnancy losses, and other factors. 

The challenge for most farmers is to obtain the input parameters. When farmers are 
asked for their herds’ stillbirth rate or percent of heifers that become pregnant and 
survive to calving, most will make a rough guess. Determining these numbers requires 
investigation using current and historic records. DRMS simplified this process by 
using data collected on DHIA testday or daily via Dart herd management software. 
Automating the process drops the guesswork of determining the input parameters 
used in computations. HeiferHub flexibly allows input parameters to be changed from 
default yearly numbers derived from data files and allows the user to adjust for variation 
throughout the year. For example, stillbirth rates in Midwest U.S. are usually higher in 
January and February. Additionally calf losses are typically higher in the winter months.

HeiferHub provides default input parameters based on the herd’s history. However the 
user can also adjust these numbers to accommodate expected changes in management 
practices and to evaluate the impact on projected number of replacements.

Figure 5 shows the HeiferHub input screen. Most values are prefilled based on the 
data collected by DRMS. However numbers such as semen price and revenue from 
selling calves need to be provided by the user. HeiferHub will calculate the number of 

Figure 4. Projected 8 month calvings by sex and animal type (Source: DRMS HerdHQ).
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anticipated calves based on number of animals to be bred by month or week. Setup 
screens can be saved so the user can easily return and make new projections.

As shown in Figure 6, results are presented in a stepwise process starting with:

1.	 The number of cows and heifers being bred to each semen type.

2.	 The number of anticipated pregnancies by type of offspring.

3.	 Finally, the projected number of replacements. 

HeiferHub will calculate the anticipated number of replacement animals needed based 
on the herd’s involuntary culling rates and heifer losses, and, it will show either the 
number of deficit replacements or the number of extra heifers that may be sold. 

An additional feature of HeiferHub is that it will calculate the anticipated revenues from 
selling dairy replacement calves, dairy bull calves and Dairy x Beef crossbred calves 

Figure 5. HeiferHub herd input parameter screen.
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minus semen costs. The user can adjust the numbers and determine which scenario 
provides the greatest return from selling animals while still meeting required numbers 
of replacement animals.

HeiferHub uses the past year’s breeding events to determine the percent of animals 
that were bred to each semen type. However, often producers will adjust their actions 
from month to month. Therefore, it became valuable to add a summary for the both 
the recent three months and recent three weeks - showing number of animals bred to 
each semen type. Figure 7 shows an example of this summary.

Understanding the number of animals bred to each semen type for the past months (or 
weeks) will provide a more recent perspective of the breeding decisions made. These 
numbers can be used to adjust the annual percentages on the input parameter screen. 

Figure 6. Results Screen for HeiferHub.
 

 
Figure 7. Breeding History from HeiferHub. 
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HeiferHub is an easy-to-use web tool that allows producers to make quick and-well 
informed breeding decisions to ensure maintenance of replacement needs while also 
capitalizing on potential revenue from the sale of crossbred calves. HeiferHub can be 
used by both producers and consultants that have permission to access herd data. 
HeiferHub can use either DHIA testday data or up-to-the-minute data from herds 
enrolled on the Dart herd management software and the DRMS on-farm and web 
synchrony system DartSync.

HeiferHub does not select individual service sires to use in a mating program. Nor does 
it provide mating recommendations for individual cows. Producers can work with their 
AI company to match their cows with the appropriate service sire. 

Figure 7. Breeding History from HeiferHub.
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Farmers have often an abundance of replacement heifers in their herds due to 
increasing use of sex-sorted semen and genomic tools. Given the current Italian market 
conditions, rearing more heifers than needed is not a profitable strategy. On the other 
hand, the higher market value of crossbred dairy calves is an attractive strategy for 
dairy farmers. The aim of this study was to develop a tool to help Italian dairy farmers 
identify the annual female replacement needs to optimise economic outcome of the 
dairy herd. The approach is based on herd performance and combination of different 
semen types (conventional, sex-sorted, and beef semen), with the ultimate goal of 
enhancing farm profit. A case study based on a 350-cow Holstein herd was used and 
3 levels of herd fertility (high, medium, and low) were simulated to define the required 
yearly number of dairy female replacements and the number of females yielded under 
different scenarios of semen utilization. The number of annual dairy replacements was 
obtained as the number of cows multiplied by the replacement rate, adjusted by the 
age at first calving, and the number of animals yielded was derived by semen type 
utilization, calf and heifer mortality, pregnancy losses, and calving interval, and it was 
used to evaluate the replacement cost per 100 L of milk. The latter was calculated 
from all costs incurred from birth to first calving of all females yielded minus revenues 
from selling cull cows, heifers, dairy male calves, and calves from beef when beef 
semen was used, and dividing the result by income from 100 L of milk sold. Then, 
four strategies of sexed semen utilization were combined with five strategies of beef 
semen use. Animals that were not inseminated with sexed or beef semen were bred 
with conventional semen. Regardless of fertility level, the required number of dairy 
female replacement heifers were 110. Increasing beef semen use allowed to yield 
less replacement heifers. Furthermore, as beef semen use increased and the number 
of replacement heifers decreased, replacement cost per 100 L of milk reduced. Our 
results suggested that replacement costs increase with increasing number of yielded 
heifers. Hence, combining beef and sexed semen to reach heifer balance close to 
zero, decreased the replacement cost. Farmers should choose the strategy that allows 
them to reach the annual heifer replacement needs, considering the effects of fertility. 
Once obtained, they should select the scheme that decreases the replacement cost. 
The tool will be implemented into ANAFIBJ online mating program and used prior to 
select which heifers or cows to mate with a given bull to enhance herd genetic potential, 
decrease inbreeding, lower GHG emissions and to provide farmers an approach to 
identify the best replacement strategy.

Abstract
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When farmers devise their breeding plans, they must weigh numerous factors such 
as semen type semen destination use (e.g., dairy or beef), and semen price (De 
Vries et al., 2022). Additionally, integrating sex-sorted semen with genomic tools 
can accelerate genetic advancements and increase the availability of young females 
for future herd replacements (Hjortø et al., 2015). As a result, some farmers display 
surplus replacement heifers and it has been shown that culling cows to leave space to 
replacement heifers is not necessarily the most profitable strategy for a herd (DeVries, 
2020). In the current Italian market, it’s generally unprofitable to breed excess heifers 
for sale to other farmers. However, there’s a growing interest among dairy farmers in 
the higher market value of crossbred dairy calves (Cabrera, 2022). 

The choice to breed high-genetic-merit animals with sexed semen to meet replacement 
needs, while using beef semen for the rest, presents an opportunity to simultaneously 
enhance herd genetics and profitability. Various studies have explored different 
breeding strategies to optimize herd performance, highlighting the advantages of using 
sex-sorted semen, particularly on genetically superior and fertile animals (Ettema et 
al., 2017; Holden and Butler, 2018; Clasen et al., 2021). Despite its lower conception 
rate compared to conventional semen, sexed semen is preferred for virgin heifers 
and first-lactation cows due to their better fertility performance. Moreover, it’s been 
observed a risk reduction of dystocia and stillbirth with the use of sex-sorted semen, 
as female calves are typically smaller and easier to deliver (Holden and Butler, 2018; 
Pahmeyer and Britz, 2020). 

Determining the optimal number of replacement heifers to keep and selecting the 
best strategy are crucial aspects of herd management. Currently, there’s a lack of a 
specific tool for Italian dairy farmers to aid in selecting the most suitable replacement 
strategy based on their herd’s productivity and reproductive data. Therefore, the aim 
of this study was to develop a replacement tool to help Italian dairy farmers identify the 
annual female replacement needs by varying use of sexed and beef semen on herd 
costs and stability under Italian conditions.

The method is based on the approach proposed by Genex Cooperative (Ontario, CA) 
and adjusted to the Italian herd and market conditions. A practical tool, housed in an 
Excel spreadsheet, has been devised to allow users to customize it according to their 
own situations. To illustrate its functionality, a hypothetical scenario was constructed 
around a 350-cow Holstein herd (250 cows and 100 heifers entering per year) located 
in the Po Valley (Northern Italy), targeting 40% replacement rate, 7% stillbirth rate, 5% 
calves and heifers rearing loss, and 8% pregnancy loss, which represents averages 
extrapolated by the Italian Holstein, Brown Swiss and Jersey Association (Cremona, 
Italy). Additionally, to account for unexpected issues or to allow for more “voluntary” 
culling, an additional 10% of heifers has been considered. 

The tool simulates different fertility scenarios: high (HFL), medium (MFL), and low fertility 
(LFL). Age at first calving was set at 24 mo (regardless of the fertility level of the herd), 
conception rate (CR) at 50%, 43%, and 32% for HFL, MFL, and LFL, respectively, and 
calving interval at 13, 14, and 14.5 mo for HFL, MFL, and LFL, respectively. It assumes 
equal fertility rates for conventional beef and dairy semen, with reduced fertility for sexed 
dairy semen.  Percentage of female calves from conventional and beef semen was set 

Introduction 

Material and 
methods
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at 47%, and from sexed semen at 90%. Farmers can adjust input data to match their 
specific herd characteristics and objectives. Input variables are displayed in Table 1. 

The tool initially calculates the number of dairy female replacements needed annually, 
assuming all inseminations are done with conventional semen and herd size remaining 
stable. The number of annual dairy replacements was obtained as the number of cows 
multiplied by the replacement rate and adjusted by the age at first calving, in order 
to account only for heifers that are going to calve during the considered year. It then 
explores various combinations of sexed and beef semen utilization. 

The sexed semen scenarios were: 

1.	 No use of sexed semen (NOSS).

2.	 100% of heifers inseminated with sexed semen (H100).

3.	 100% of heifers and 20% of top cows inseminated with sexed semen (H100C20), 
and 4) 80% of heifers and 20% of top cows inseminated with sexed semen 
(H80C20). 

Beef semen utilization was allocated to cows that were not inseminated with sexed 
semen, according to farm management decisions, at the following percentages: 1) 
0%, 2) 25%, 3) 50%, 4) 75%, and 5) 100%. All remaining eligible animals that were 

Table 1. Input variables of the heifer management tool. All input data can be changed by the 
farmer or technician according to specific herd situation.

 
Table 1. Input variables of the heifer management tool. All input data can be changed by the farmer or 
technician according to specific herd situation. 
 

Variable Input value 

Cows (lactating and dry) (n) 250 

Breeding heifers entering the herd (n/yr) 100 

Annual replacement rate (%)  40 

Annual herd growth rate target (%)  0 

Heifers’ safety percentage (%) 10 

Sex ratio (females/males)  
by semen type (%)  

47/53  
(conventional and beef) 90/10 (sexed) 

Calving interval according  
to the fertility level1 (mo) 

13 (high), 14 (medium), 14.5 (low) 

Animals not inseminated (%) 2 

Pregnancy loss (%)  8 

Stillbirth rate (%)  7 

Mortality from weaning to first calving (%) 5 

Age at first calving (mo) 24 

Average heifer rearing cost (€/d) 4.29 

Average heifer market value (€) 1800 

Average cost for disposal of dead-on-farm cow (€) 300 

Average cull cow market value (€) 800 

Average purebred male dairy calf market value (€) 51.60 

Average crossbred calf market value (€) 245 

Milk production (L/d) 31 

Total milk sold per year (L) 2,828,750 
1high = high herd fertility level (50% conception rate and 13 mo calving interval); medium = medium herd fertility 
level (43% conception rate and 14 mo calving interval); low = low herd fertility level (32% conception rate and 14.5 
mo calving interval). 
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not inseminated with sexed or beef semen were bred with conventional semen. The 
method calculates heifer balance between the number of heifers yielded and the 
annual dairy replacement needs. The number of animals yielded was used to evaluate 
the replacement cost per 100 L of milk. This information helps evaluate the cost-
effectiveness of different semen utilization protocols, taking into account feed costs and 
market values. Replacement cost (RC) is the cost to maintain a herd at the same size 
per 100 L of milk sold and is generally used to compare different breeding strategies. 
It depends on some economic factors such as annual replacement rate, heifer rearing 
cost, and revenue from selling milk (Bethard and Nunes 2011).

The method presented in the paper is a valuable instrument to help farmers identify 
the correct number of dairy heifers to be inseminated to maintain constant the herd 
size (or to set an annual growth rate) and to minimize rearing costs. Table 2 reported 
the annual number of heifers and cows eligible to be mated, the number of services 
per conception needed to maintain a constant adult herd size, the conception rate 
under the 3 fertility levels (HFL, MFL, and LFL), the number of the annual dairy female 
replacement cows, and the number of heifers yielded. The number of dairy female 
replacement heifers that the farm needs is 110, for HFL, MFL, and LFL. 

Table 3 summarizes the possible pairwise solutions of the tool (replacement costs per 
100 L of milk, and heifer balance) that result from the different strategies of beef and 
sexed semen use under the 3 different herd fertility levels. Larger use of beef semen 
allows farmers to yield less heifers, on a yearly basis; indeed, when heifer balance 
is negative, farmers are breeding less heifers than needed, whereas positive values 
means that farmers are breeding more than needed heifers. Accordingly, as beef 
semen use increases and reared heifers reduces, replacement cost per 100 L of milk 
decreases regardless of reproductive performance. When heifer balance is below 
zero, replacement cost is reported, but it should be noted that this is not a replacement 
strategy that should be pursued by farmers, as it means that, if followed, herd size will 
decrease, or farmers have to buy heifers to maintain their herd size. 

Furthermore, increasing the use of dairy sexed-sorted semen within the four dairy 
sexed semen utilization strategies (NOSS, H100, H100C20, H80C20) leads to an increase 

Results and 
discussion

Table 2. Number of heifers and cows to breed, number of dairy replacements needed per year, number of 
dairy heifers yielded, number of services per conception, and average conception rate (%) needed to maintain 
a constant herd size under 3 fertility levels1, assuming 100% use of conventional semen. 
 

  Services/conception, n Conception rate, % 

Animals Eligible animals, n   High Medium Low High Medium Low 

Heifers 
Cows 
Annual replacements needed  
Number of dairy heifers yielded 

100 
250 
110 

90 (low) 
94 (medium) 

98 (high) 

1.8 
2.2 

2.0 
2.9 

2.5 
4.3 

55 
45 

50 
35 

40 
23 

 

 
1High = high herd fertility level (50% conception rate and 13 mo calving interval); medium = medium herd fertility level (43% 
conception rate and 14 mo calving interval); low = low herd fertility level (32% conception rate and 14.5 mo calving interval). 
 
  

Table 2. Number of heifers and cows to breed, number of dairy replacements needed per year, number of 
dairy heifers yielded, number of services per conception, and average conception rate (%) needed to maintain 
a constant herd size under 3 fertility levels1, assuming 100% use of conventional semen.
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of replacement cost (and higher number of reared heifers), regardless of beef semen 
use. Better fertility level leads to higher number of heifers reared, at the same level of 
beef and sexed semen use. Looking at these results, it is clear the positive relationship 
between replacement cost and heifer balance as greater replacement costs were 
obtained with higher number of heifers yielded, which also corresponds to lower use 
of beef semen. 

The highest replacement cost has been obtained with 0% beef semen and H100C20 
(rearing from 20 to 31 heifers more than needed, for MFL and HFL, respectively), 
whereas the lowest with 100% use of beef semen and NOSS (but rearing from -84 to 
-83 heifers than needed, for LFL and MFL, respectively, to maintain constant the herd 
size). Ideal situations can be reached adjusting beef and sexed semen, to reach heifer 
balance close to zero (Table 3), indeed, the combination of beef semen and sexed 
semen, within strategies and reproductive performances, decreased the replacement 
cost. Within their reproductive performance, farmers should choose the strategy that 
allow them to reach their annual heifer replacement needs; once obtained, they should 
select the scheme that decreases the replacement cost. 

The tool provides dairy farmers with a method to determine the optimal replacement 
strategy, taking into account the impact of fertility by varying the use of sexed and beef 
semen on herd costs and stability. This tool will be integrated into the ANAFIBJ online 
mating program and used beforehand to decide which heifers or cows to mate with 
a specific bull, aiming to improve the herd’s genetic potential and reduce inbreeding.

Table 3. Replacement costs per 100 L of milk (€) and heifer balance1 (in parentheses) for different strategies 
of beef and sexed semen use under different herd fertility levels. Missing values refer to breeding strategies 
that cannot be pursued. 
 

Beef semen use, % 

Dairy sexed semen use3 

NOSS H100 H100C20 H80C20 
Low fertility level2 
0 9.02 (-20) 9.73 (4) 10.00 (16)  9.87 (11) 
25 8.52 (-36) 9.18 (-12) 9.50 (0) 9.37 (-5) 
50 8.03 (-52) 8.68 (-28) 9.00 (-16) 8.87 (-21) 
75 7.53 (-68) 8.18 (-44) 8.51 (-32) 8.37 (-37) 
100 7.03 (-84) 7.69 (-60) - ( - ) - ( - ) 
Medium fertility level2 
0 9.11 (-16) 9.79 (8) 10.12 (20) 9.98 (16) 
25 8.59 (-33) 9.27 (-8) 9.61 (4) 9.47 (-1) 
50 8.08 (-50) 8.76 (-25) 9.09 (-13) 8.95 (-18) 
75 7.56 (-66) 8.24 (-41) 8.57 (-29) 8.44 (-34) 
100 7.05 (-83) 7.73 (-58) - ( - ) -     (-  )  
High fertility level2 
0 9.22 (-12) 10.01 (17) 10.4 (31)  10.24 (25) 
25 8.70 (-29) 9.50 (0) 9.88 (14)  9.73 (8) 
50 8.19 (-45) 8.98 (-16) 9.37 (-2)  9.21 (-8) 
75 7.67 (-62) 8.46 (-33) 8.85 (-19) 8.69 (-25) 
100 7.15 (-78) 7.94 (-49)  -    ( -  )  -     (-  ) 

1Heifer balance was calculated as annual dairy replacements needed minus annual dairy 
heifers yielded. 

2High = high herd fertility level (50% conception rate and 13 mo calving interval); medium = 
medium herd fertility level (43% conception rate and 14 mo calving interval); low = low herd 
fertility level (32% conception rate and 14.5 mo calving interval). 

3NOSS = no use of sexed semen; H100 = 100% of heifers inseminated with sexed semen; H100C20 
= 100% of heifers and 20% of top cows inseminated with sexed semen; H80C20 = 80% of 
heifers and 20% of top cows inseminated with sexed semen. All remaining eligible animals 
that were not inseminated with sexed or beef semen were bred with conventional semen. 

 
  

Table 3. Replacement costs per 100 L of milk (€) and heifer balance1 (in parentheses) 
for different strategies of beef and sexed semen use under different herd fertility 
levels. Missing values refer to breeding strategies that cannot be pursued.
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Figure 1. Annual dairy heifers yielded for the different sex semen utilization strategies by 
different dairy sexed semen use (NOSS = no use of sexed semen; H100 = 100% of heifers 
inseminated with sexed semen; H100C20 = 100% of heifers and 20% of top cows inseminated 
with sexed semen; H80C20 = 80% of heifers and 20% of top cows inseminated with sexed 
semen) (bars) and replacement costs (lines, second axis) at different beef semen use for a) low 
herd fertility and b) high herd fertility level. Green line represents the number of annual dairy 
female replacements needed. 
 
Replacement cost:  
RC = [ cost of rearing replacements – (cull cow income + income from male calves sold) ] / income from 100 
L of milk sold        (1) 

 
 

Figure 1. Annual dairy heifers yielded for the different sex semen 
utilization strategies by different dairy sexed semen use (NOSS = no 
use of sexed semen; H100 = 100% of heifers inseminated with sexed 
semen; H100C20 = 100% of heifers and 20% of top cows inseminated 
with sexed semen; H80C20 = 80% of heifers and 20% of top cows 
inseminated with sexed semen) (bars) and replacement costs (lines, 
second axis) at different beef semen use for a) low herd fertility and 
b) high herd fertility level. Green line represents the number of annual 
dairy female replacements needed.

Replacement cost: 
RC = [ cost of rearing replacements – (cull cow income + income from 
male calves sold) ] / income from 100 L of milk sold		 (1)
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This study examines the influence of socio-demographic factors on the breeding 
goals of dairy farmers and their clustering in Slovenia. It is important to understand 
farmers’ perspectives on breeding objectives, as they may differ from those of other 
stakeholders involved in breeding. Involving farmers in the process of setting breeding 
goals can improve the use of selection tools and confidence in the selection process. 
A mixed methods approach was used. As focus groups are a useful qualitative method 
to quickly obtain in-depth information on participants’ attitudes and opinions on the 
topic under study, the aim of using focus groups was to find out farmers’ views on 
breeding target traits. To obtain views that are representative of the population, we 
conducted a quantitative survey to determine how preferences regarding breeding 
objectives vary across the cattle breeding community, focusing on the role of farmers’ 
socio-demographic factors. Three focus groups with 30 participants explored farmers’ 
needs, attitudes towards genomic selection, barriers and benefits to adoption, the 
structure of the Total Merit Index and preferences in breeding objectives. An online 
questionnaire distributed to Slovenian dairy farmers received 212 responses. A cluster 
analysis based on the distribution of the weights of the trait categories in the Total 
Merit Index identified three different groups of farmers. Despite the differences, animal 
health, animal welfare and reproduction traits dominated across the sample, while 
environmental and meat traits were considered less important. The quantitative analysis 
revealed that new environmental traits are less important, which is attributed to societal 
pressure and negative perceptions of the environmental impact of dairy farming. In the 
focus group discussions, reservations were expressed about traits such as greenhouse 
gas emissions, reflecting societal sentiment and the constraints of farming. This study 
demonstrates the importance of combining qualitative and quantitative methods to 
gain a comprehensive understanding. The results show that farmers aspire to a new 
structure of Total Merit Index that includes several trait categories, with milk production 
traits being the most important. Three distinct groups of farmers emerged, each with 
their own focus. Animal health and welfare were seen as the most important traits, 
while new traits such as environmental traits were viewed less positively. The results 
of the study can help to develop new breeding goals and increase the confidence of 
breeders in the selection process through active engagement.

Key words: breeding goals, traits, total merit index, dairy cattle breeders. 
Presented at the ICAR Anual Conference 2024 in Bled at the Session 1b: Decision 
Support Tools of the Future – Promoting Sustainability Farm Management.
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Genomic selection has transformed dairy cattle breeding, enabling farmers to achieve 
higher annual rates of genetic gain by using genomically tested animals in their herds. 
This approach also makes it possible to select for traits that are difficult to measure, 
such as feed efficiency, methane emissions, and energy balance. By optimizing mating 
plans, genomic selection helps to maximize genetic gain while controlling inbreeding, 
ensuring accurate pedigrees and avoiding genetic defects (Pryce and Hayes, 2012; 
Schefers and Weigel, 2012; Schöpke and Swalve, 2016; Seidel et al., 2020; Gutierrez-
Reinoso et al., 2021). Despite these advances, farmers’ preferences regarding key 
traits in their herds are often overlooked when developing breeding goals (Nielsen and 
Amer, 2007; Ahlman et al., 2014). Recognizing the importance of understanding these 
preferences, Martin-Collado et al. (2021) introduced a reference measure to assess 
farmers’ attitudes towards breeding tools. This emphasizes the need for farmers to 
actively participate in the design of breeding objectives together with stakeholders, as 
such participation increases the acceptance of the resulting tools and objectives (Hill, 
2016). Breeders, who play a crucial role in determining the genetic direction of future 
generations, have a major influence on the future of the breed through their selection 
decisions.

In past centuries, the focus of dairy cattle breeding programs has been predominantly on 
milk production and composition, which has led to unfavourable genetic consequences 
for traits such as fertility, health, longevity and environmental sensitivity (Nielsen and 
Amer, 2007; Nielsen et al., 2014; Miglior et al., 2017; Brito et al., 2021; Gutierrez-
Reinoso et al., 2021). In addition, reliance on a limited number of dairy breeds and a 
small number of sires within breeds has contributed to a decline in genetic diversity, 
leading to problems such as inbreeding depression and an increasing incidence of 
recessive genetic diseases. By de-emphasizing milk yield and focusing on a broader 
range of traits, long-term genetic variability can be improved (Brito et al., 2021). The 
dairy industry therefore needs to refine its selection indices to place more emphasis on 
traits related to animal welfare, health, longevity, environmental efficiency (e.g. lower 
methane emissions) and resilience (de Hass et al., 2021). Some countries, particularly 
in Western Europe, North America, Australia and New Zealand, have already started to 
implement these broader breeding objectives (Miglior et al., 2017; Cole and VanRaden, 
2018). A review of various studies on breeding challenges highlights the following key 
traits in dairy farming: Production (milk yield, fat and protein yield, somatic cell count, 
longevity); Reproduction (fertility, calving interval, ease of calving, perinatal mortality); 
Health and welfare (disease resistance, immune response, adaptability, survival); 
Environmental traits (climate adaptation, feed efficiency, methane emissions) and 
conformation traits (udder traits, feet and leg traits, locomotion) (Meijer et al., 2015).

Research shows that farmers’ openness to innovation is influenced by personal factors 
such as age, education and income, as well as farm characteristics such as size, 
production systems and conditions (Padel et al., 2015; Roussy et al., 2017; Läpple and 
Thorne, 2019). Younger, wealthier and better educated farmers, especially those with 
larger farms, are more open to innovation (Naspetti et al., 2017; Skjerve et al., 2018). 
Fertility is often prioritized by farmers (Byrne et al., 2016; Slagboom et al., 2016), with 
older farmers focusing on production traits and younger ones on functional traits (Martin-
Collado et al., 2015). Most research has focused on farmers’ views on bioeconomic 
models of animal traits (Byrne et al., 2016; Fuerst-Waltl et al., 2016; Paakala et al., 2018; 
Martin-Collado et al., 2015) and theoretical identification of traits (Gutierrez-Reinoso et 
al., 2021), while socio-demographic influences on the development of breeding tools 
have been overlooked, especially in countries with small herds (Skjerve et al., 2018). 
Therefore, a more in-depth study of these factors is crucial, as underscored in the 
research by Skjerve et al. (2018).

The aim of this study is to investigate the influence of socio-demographic factors on dairy 
farmers’ preferences for breeding traits, with a particular focus on new environmental 
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traits. Furthermore, it will be investigated how these preferences differ within dairy 
farmers in Slovenia.

A mixed methods approach was used. Focus groups to gather in-depth opinions on 
selection tools, genomic selection and breeding traits. The focus groups were led by 
a social scientist experienced in qualitative analysis and moderated by a researcher 
unknown to the participants to ensure an unbiased discussion. Twenty-seven farmers 
took part in the focus groups, which were conducted online in the context of COVID-19. 
Participants discussed selection needs, genomic selection knowledge and preferences 
for breeding goals. The data was evaluated using thematic analysis, identifying key 
topics such as productivity, resistance and functionality. For the quantitative approach, 
an online survey was distributed via email and social media in August and December 
2021. The survey, in which 212 people participated, assessed farmers’ preferences for 
various breeding traits using a seven-point Likert scale. The traits included production, 
reproduction, health, environment and functional traits. Respondents also indicated 
their desired weighting of traits in an overall merit index. Socio-demographic and farm 
characteristics were collected to investigate how these factors influence characteristic 
preferences.

The statistical analyses were carried out using SAS (Version 9.4, SAS Institute, Cary, 
NC, USA) and IBM SPSS Statistics (Version 25). Using data from 212 respondents, 
farmer groups were identified based on their preferred composition of a Total Merit 
Index. A two-stage cluster analysis was performed in SPSS. First, a hierarchical 
technique (Ward method with squared Euclidean distances) was used to determine 
the number of clusters and their centers. Then a non-hierarchical k-means method was 
applied using the identified cluster centers as starting points. The differences between 
the groups of farmers were analysed using the non-parametric Kruskal-Wallis test, as 
the proportions of characteristics in the Total Merit Index were not normally distributed.

Basic statistics were calculated for individual traits and trait groups such as milk 
production, reproduction and health. General linear models (SAS, GLM procedure) 
were used to investigate the relationship between farmer/farm characteristics and trait 
preferences. Mean differences were tested using the “pdiff” option of the “LS means” 
statement and adjusted using the Tukey-Kramer method. We used the following model:

Yijklm = µ + Ai + Ej + Mk + Hl + eijklm

where Yijklm is the trait of interest; m s the overall mean; Ai is the fixed effect of a 
farmer’s age (i=2 classes; <40, ≥40); Ej  is the fixed effect of the jth class of education 
(j=3 classes; primary and vocational school, secondary education, higher education); 
Mk  is the fixed effect of milk production level (k=4 classes; <8000 kg, 8000–9000 kg, 
9001–10000 kg, >10000); Hl is the fixed effect of herd size (l=4 classes: <24 dairy cows, 
24–42, 43–60, >60); and eijklm  is the random residual. The residuals were assumed to 
be normally distributed with a mean of zero and variances of se.

The study investigated the preferences of dairy farmers in Slovenia with regard to target 
breeding goals and breeding traits, using both quantitative and qualitative methods. 
Table 1 shows the socio-economic characteristics of the farmers in the sample together 
with the characteristics of their farms. Of the 212 farmers interviewed, the majority were 
conventional producers, with only one certified for organic farming. In addition, 62.3% of 
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respondents farmed in less-favoured areas. The average farm size was 48.2 hectares 
of owned and leased agricultural land, with an average of 97 cattle (including cows, 
heifers, breeding bulls, fattening bulls and calves) and 50 dairy cows. In 2020, the 
average milk production per cow was 8,844.5 kg.

The composition of the current Total Merit Index (TMI) for the Holstein breed and the 
changes proposed by farmers are shown in Figure 1. The current TMI includes milk 

Table 1. Farmer and farm characteristics of the sample (n = 212).  
 

Characteristics n % Characteristics Mean SD Median CV 
Gender of respondents   

Land owned and 
rented (ha) 48.2 47.6 36.0 99.1    Female 45 21.2 

   Male 167 78.8 
Age of respondents   

No. of livestock 102.6 59.1 97.0 57.5    ˂ 40 96 45.3 

   > 40 116 54.7 

No. of cattle 51.3 27.1 50.0 52.7 
Education of respondents   

   Primary and vocational 
   school 

20 
 

9.4 
 

   Secondary education1 107 50.5 

Milk yield (kg of 
milk in standard 

lactation) 
8768.0 1691.0 9000.0 20.4 

   Higher education2 85 40.1 

Production system   

   Conventional 211 99.5 

   Organic 1 0.5 

Farm with limited 
environmental factors? 

 
 

 
 

Milk production per 
cow in 2020 

(kg of milk per 
year) 

8844.0 1807.0 9000.0 19.3    Yes 132 62.3 

   No 80 37.7 
1Vocational secondary education, Technical and vocational secondary education, General secondary education 
2Vocational college, Bachelor’s degree, Master’s degree, PhD degree  

 

  

Table 1. Farmer and farm characteristics of the sample (n = 212).

 

 
 
Figure 1. Composition of the Total Merit Index currently used for the Holstein breed and the 
share of a group of traits in the Total Merit Index proposed by farmers. 
 
 
 
  

Figure 1. Composition of the Total Merit Index currently used for the Holstein breed and the 
share of a group of traits in the Total Merit Index proposed by farmers.
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traits (40%), linear-type traits (30%), health traits (6%), longevity traits (6%), workability 
traits (2%) and fertility traits (16%). On average, farmers were in favour of decreasing 
the emphasis on milk production (27%), linear-type traits (14%) and fertility traits (13%), 
while they wanted to increase the proportion of traits for health (13%), longevity (11%) 
and workability traits (10%). They were also in favour of including incorporating new 
traits such as meat production (3%) and calving ease (8%). 

The cluster analysis identified three groups of respondents (Figure  1): 
Functionality‑oriented farmers who prioritised fertility (22%), longevity (18%) and 
health (18%). This group consisted of 45 respondents (21%), mainly middle-aged, 
with secondary education (44.0%) or higher education (46.6%). In 2020, they kept an 
average of 50 dairy cows with a milk yield of 8,306 kg per cow. The production‑oriented 
farmers focused more on milk production (44%) and linear traits (16%). This group 
included 60 respondents (28.3%), who were predominantly older and had a secondary 
(43.3%) or higher education (53.3%). In 2020, they kept an average of 46 Holsteins 
with a milk yield of 8,671 kg per cow. Resilience-oriented farmers include breeders who 
have reduced the proportion of milk production (23%) in favour of traits such as fertility 
(13%), health (13%), longevity (11%) and workability (11%). This group accounted 
for 50.4% of respondents, most of whom were younger and had a secondary (57.0%) 
or higher education (29.1%). In 2020, they kept 54 dairy cows with a milk yield of 
8,995 kg per cow.

The discussions in the focus groups reflected these findings. Functionality-oriented 
farmers advocated placing less emphasis on milk production and instead promoting 
traits such as fertility, longevity and health to ensure stable production, with a typical 
comment being: “The cows are in the barn to give milk. As cessation of production due 
to health problems or death is a major problem, the proportion of longevity and fertility 
should be increased” (farmer 2, male, 57 years old, secondary school). Production-
oriented farmers, often referred to as traditionalists, were more inclined to increase milk 
production, as one participant explained: “The cow is there to be milked. The share of 
production should not be reduced, but increased a little, and the share for conformation 
traits should be added. Fertility is irrelevant because we have no data, we should put it 
in the frame.” (farmer 3, male, 31 years old, bachelor degree). However, the majority of 
focus group participants were resilience-oriented farmers who advocated a balanced 
approach to breeding goals. One farmer emphasized the importance of long-term 
profitability: “We should find the golden mean between the different traits. We need 
to include everything from health, fertility, temperament, milk flow to physical traits so 
that we do not over-exploit cows in the long run. What good is it if, like me, you have 
extreme milkers and then health problems arise? It is important to make a profit in the 
long term.” (farmer 1, male, 38 years old, Master degree).

Figure 2 shows that respondents ranked animal health and welfare as the most important 
traits (M = 6.32, SD = 0.71), followed by reproduction (M = 6.16, SD = 0.78). Meat 
production traits received the lowest scores (M = 4.14; SD = 1.63). The environmental 
traits were rated lower, with methane emissions (M = 4.62) and energy metabolism 
(M = 5.43) being rated particularly negatively. Some farmers dismissed these traits as 
“media agitation” or “environmental extremist mania,” as one participant commented: 
“The issue of methane emissions and greenhouse gases is complete nonsense, 
because agriculture is not to blame” (farmer 6, male, 38 years old, Master degree). 
Farmers with a lower level of education rated traits such as climate adaptation and 
methane emissions higher, while larger herd owners and those with higher milk yields 
attached greater importance to traits such as consumption capacity and feed efficiency.

In this study, the preferences of Slovenian dairy farmers regarding breeding goals 
and breeding traits were investigated using a mixed methods approach. Focus 



52

Slovenian dairy farmers’ view

Proceedings ICAR Conference 2024, Bled

groups provided an in-depth understanding of farmers’ views, while the quantitative 
survey revealed the differences in these preferences, particularly in relation to socio-
demographic factors. The results show that the majority of dairy farmers want to develop 
a new Total Merit Index, placing the greatest weight on milk production traits. However, 
there is a clear shift away from the German structure of the index, which emphasizes 
milk production (36%), to the Dutch approach, which gives less weight to production 
traits (28%; EuroGenomics, 2022). The differences between the selection indices of 
the individual countries are due to different economic conditions, traits recorded, and 
breeds used (Miglior et al., 2017; Cole and VanRaden, 2018; EuroGenomics, 2022).

Relying only on average preferences does not adequately capture the diversity of 
farmers (Martin-Collado et al., 2015). In this study, three different types of farmers were 
identified, although no significant differences in socio-demographic characteristics were 
found. While previous studies have emphasized farmers’ strong preference for milk 
production traits (Skjerve et al., 2018; Martin-Collado et al., 2015), this study found 
a shift among Slovenian dairy farmers, who now place more emphasis on functional 
traits. Milk production and linear-type traits, which currently dominate in the Total Merit 
Index, are becoming less important.

The analysis of the focus groups revealed that farmers have a more negative attitude 
towards environmental traits than indicated in the survey. This discrepancy mirrors the 
findings of other Slovenian studies in which negative attitudes are attributed to ignorance 
of environmental issues and fear of increased regulatory pressure (Benedičič et al., 
2022; Purcell et al., 2023). Less educated, older farmers with smaller herds who are 
concerned about the environmental impact of their practises were particularly worried 
about potential EU regulations on methane emissions. Dealing with environmental 
features remains a challenge as many farmers view them with scepticism due to public 
pressure on agriculture (Erjavec and Erjavec, 2020; van der Ploeg, 2020). Effective 
communication tailored to different groups of farmers can help to promote acceptance 
of environmental breeding goals and facilitate positive changes in dairy cow breeding. 
New traits need to be introduced for direct selection of environmental traits, such as 
methane emissions (Klopčič and Kuipers, 2009).

Figure 2. Farmers’ preferences for a group of traits. Boxplots show the mean (solid lines), median (x), 
first and third quartiles (in the boxes), dispersion and outliers (dot) for farmers’ preferences for a group 
of traits (N=212).

 

 

Figure 2. Farmers' preferences for a group of traits. Boxplots show the mean (solid lines), median (x), first 
and third quartiles (in the boxes), dispersion and outliers (dot) for farmers’ preferences for a group of traits 
(N=212). 
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Overall, farmers consider all breeding traits to be important, although they attach less 
importance to environmental traits. This is consistent with the findings of Wallenbeck 
et al. (2013), who showed that farmers prioritize traits directly related to profitability, 
such as feet and legs, health and longevity, while they place less importance on traits 
such as methane production. Understanding these preferences allows farmers to 
adapt to new trends, improve animal welfare and effectively manage market volatility 
(Benedičič et al., 2022). Animal health, welfare and reproductive traits were most 
important, while meat production was least important, as dairy farmers focus mainly 
on milk. These results reflect previous research highlighting reproductive traits as 
crucial for profitability (Martin-Collado et al., 2015; Skjerve et al., 2018). Slovenian 
farmers, especially those in less-favoured areas with limited expansion opportunities, 
consider animal welfare as crucial for maximizing production (Benedičič et al., 2022). 
The relatively low importance given to environmental breeding traits could be due to 
the fact that they are new and farmers are not familiar with them. However, as the focus 
group results show, farmers are increasingly aware of the need to strike a balance 
between environmental sustainability and profitability to ensure the long-term viability 
of their farming practices.

This study on the breeding goal preferences of Slovenian dairy farmers emphasizes 
the value of integrating qualitative and quantitative methods to gain a comprehensive 
understanding of the topic. The results show that farmers aspire to a redesigned 
Total Merit Index that includes several trait categories, with milk production traits 
being the most important. However, farmers’ preferences for the proposed Total Merit 
Index varied, leading to the identification of three distinct groups: those who prioritize 
production traits, those who emphasize functional traits, and those who focus on 
resilience. Above all, animal health and welfare proved to be the most important traits, 
while new traits, especially environmental ones, were met with less enthusiasm. The 
study also found that certain traits, such as greenhouse gas emissions, were perceived 
negatively, highlighting the need for targeted communication strategies to promote their 
acceptance. These findings can inform the development of new breeding goals and 
programs and increase breeders’ confidence in their selection processes by actively 
involving them in decision-making.
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Whereas the dairy industry often speaks about improving sustainability of the dairy 
industry by herd management changes on large dairy farms, statistics actually show 
us that most dairy cows on this planet are kept in herds of small holders in developing 
countries. So when we want to have a global impact we should also take a look at 
these countries.

An example of such a developing country is Ethiopia, where you can find more than 
15 million dairy cows. This is more than the number of dairy cows in the US and 
Canada together. While so many of us are focussing on improving results of these 
large farms that are already producing lots of high quality milk, with a low footprint 
per kg of product. Small adaptations in dairy farms in developing countries will let 
them take huge leaps in milk quality results and productivity, having major impact 
on the income of the farmer, food supply, carbon footprint and the local economy.

If we take a deeper look at the example of Ethiopia we can see that their domestic 
milk production is increasing, from 3 bilion liters in 2016 to 4.96 bilion liters in 2021. 
However, this growth has been insufficient and, at times, inefficient, because while 
some larger, commercial farms exist, almost 95% of dairy cows are kept by rural, 
smallholder farmers with fewer than five head of cattle per household. A typical 
cow produces just 1-2 liters of milk a day, which are either consumed at home or 
sold through informal market systems with little or no quality control. These farmers 
struggle to access inputs and services needed to improve their herds - such as feed, 
veterinary care, and artificial insemination - -and there is little incentive for them to 
sell to the formal market. (Hughes, 2023)

Having more tools to manage data can be an essential part of these leaps in 
development. However, it is obvious that the tool used by a farmer with 1000 cows 
has no use for a farmer with 25 cows. With simple decision support tools a farmer 
can take better care of the cows health, fertility and productivity and with that increase 
their income and decrease the environmental impact of 1 Kg of Milk. Besides, the 
consultants that are advising these farms will be able to work much more efficient 
when data is available and bring more added value. Although this all sounds simple 
there are big challenges in countries where internet, technical devices and agricultural 
knowledge is not always at hand. As UNIFORM-Agri we have seen that it is possible 
to improve herd management on these farms by providing a simple registration 
application for smartphones that connects what is happening on the farm to the 
consultant at the dairy factory.

Hughes, N. R. (2023, July 31). Green milk? Sounds good to Ethiopia’s dairy industry. 
From: https://blogs.worldbank.org/en/africacan/green-milk-sounds-good-ethiopias-
dairy-industry
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The onset of lactation and the subsequent period of habituation to the milking routine 
is a stressful process for dairy cows, where new social groups and novel stimuli 
converge. This period seems to be particularly challenging for primiparous cows. The 
objective of this study was to compare the dynamics of milking behaviour during the 
early lactation of primiparous vs. multiparous Holstein (HO) and Jersey (JE) cows, 
under an automatic milking system with a semi-voluntary batch milking design. This 
retrospective observational study included information from milking events in 2,138 
cows from May to December 2023 in an organic certified herd in Texas, USA.  Milking 
behaviour information for the first four weeks of lactation included % of incomplete 
milkings (INC), % of kick-offs (KO), and % of teat cleaning failure (TCF), collected 
from DelPro software (DeLaval, Sweden) �and used as a proxy for habituation to 
the milking routine and system. Cows were moved to the milking barn twice per day, 
where they could select their milking visits among 22 robots (DeLaval, Sweden). Parity 
[primiparous (PRIM) and multiparous (MULT)] and calving data were extracted from 
PCDART software (DRMS, NC, USA). Data were analysed by logistic regression to 
assess the differences in milking behaviour between PRIM and MULT cows within 
two breed groups (HO and JE) in weekly intervals following calving (W1; W2; W3; 
and W4). After edits, 28,165 milking records were analysed in 2,138 cows (27% 
primiparous; 73% multiparous). The frequencies of undesirable milking behaviours 
(INC; KO; and TCF) were greatest in PRI cows in both HO and JE during most of the 
weekly periods. The greatest frequencies of INC per milking event were in PRI cows 
during W2 (HO = 8.6% and JE = 12.0%). The greatest frequencies of KO were also 
in PRI during W1 (HO = 10.2%; JE = 17.2%), while the greatest TCF for HO and JE 
were 8.38% (W1) and 4.98% (W2), respectively. In HO, the odds (95% confidence 
interval) of INC were greater for PRIM compared with MULT cows during W2 [2.39 
(1.72-3.31)], W3 [1.63 (1.21-2.18)] and W4 [1.65 (1.20-2.25)]. Similarly, in JE the 
odds of INC were greater for PRIM for all the weekly periods: W1 = 77.6 (15.1-1,419), 
W2 = 7.54 (5.28-10.9), W3 = 3.06 (2.19-4.27), and W4 = 2.75 (1.94-3.87). The odds 
of KO were greater in PRIM HO during W1 [3.42 (1.74-6.62)], W2 [2.28 (1.66-3.12)], 
and W3 [1.83 (1.35-2.48)]. In JE, the odds of KO were greater in PRIM during W1 [8.33 
(4.53-15.48)], W2 [3.61 (2.76-4.70)], W3 [2.43 (1.90-3.08)], and W4 [1.69 (1.30‑2.18)]. 
Finally, the odds of TCF were greater in PRIM HO during W1 [2.05 (1.02-3.92)] and 
W2 [1.98 (1.39-2.80)]. In JE, the odds of TCF were greater in PRIM during W1 [4.09 
(1.35-11.5)], W2 [5.10 (3.08-8.44], and W3 [2.71 (1.39-5.15)]. These results highlight 
the differences in milking behaviour during the early lactation of primiparous vs. 
multiparous cows in both Holstein and Jersey cows. As anticipated, the magnitude 
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of these differences decreased during weeks 3 and 4, which may be associated with 
the process of habituation to milking during the first lactation. The greater disparity 
between primiparous and multiparous reported in Jersey compared with Holsten cows 
may relate to differences in udder conformation, incidence of udder oedema, body 
size, or temperament.

Keywords: primiparous, habituation, automatic milking, behaviour: 
Presented at the ICAR Anual Conference 2024 in Bled at the Session 1a: Decision 
Support Tools of the Future – Promoting Sustainability Farm Management 

Acute stress in dairy cows, characterized by negative affective states, is widely 
acknowledged to have detrimental effects on both welfare and productivity. Moreover, 
it can significantly impact cattle handling practices and compromise worker safety 
(Grandin, 1993; 1999), especially during the milking process (Grandin, 1998; Douphrate 
et al., 2013; Edwards and Kuhn-Sherlock, 2021).

The onset of a dairy cow’s first lactation and the subsequent habituation period to the 
milking routine constitute a particularly stressful phase in their lives. This period involves 
increased interaction with human caretakers, integration into new social groups, and 
exposure to various novel stimuli during milking. Handling primiparous heifers during 
this transition can also pose challenges to human handlers, increasing the difficulty of 
milking tasks and the risk of cattle-related injuries (Sorge et al., 2014; Edwards and 
Kuhn-Sherlock, 2021; Phillips et al., 2021). Despite this, there remains a research gap 
regarding specific behavioural changes in cows throughout the first lactation.

Previous studies on heifer habituation to the milking routine have shown that primiparous 
cows tend to exhibit higher levels of excitability compared to multiparous cows at 
various stages of the milking process (Andrea et al., 2015). Most research efforts have 
primarily focused on expediting the habituation process through pre-lactation exposure 
to milking routines and/or early lactation interactions with caretakers (Bremner, 1997; 
Kutzer et al., 2015). 

The behavioural responses exhibited by dairy cows to novel stimuli, such as kicking 
during the milking are a reflection of stress or discomfort. Consequently, a deeper 
understanding of this process is particularly relevant. Interestingly, in a recent study by 
Kness et al (2023) where milking unit kick-off was used as a proxy for habituation to the 
milking procedure, this behaviour was consistently greater in primiparous compared to 
multiparous cows. Furthermore, the relationship between days in milk and the proportion 
of cows displaying milking unit kick-off was not linear, but rather increased for the first 
several weeks before decreasing again. 

In recent decades, automatic milking systems (AMS) have been steadily gaining in 
popularity. Among multiple advantages provided by AMS, improved cow comfort is 
considered central to these systems. However, heifers may exhibit stress reactions, 
such as kicking and stepping as well as vocalization and elimination, during their first 
visits to the milking robot (Jacobs and Siegford, 2012). Moreover, although in these 
systems the human-cow interaction component is significantly reduced, first parity 
cows, require some guidance and training during the beginning of their lactation (Jago 
et al., 2011; Tse et al., 2018). 

Notably, studies documenting daily changes in stress behaviours during the habituation 
period or differences in these behaviours between primiparous and multiparous cows 
during the initial months of lactation in AMS are scarce (von Kuhlberg et al., 2020). 
Moreover, to the best of the authors’ knowledge, studies analysing data originated 
from AMS with a semi-voluntary batch milking design are missing. In these systems, 
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cows are moved to the milking barn at fixed times of the day, where they can select 
their milking visits among multiple robots.

We hypothesized that adverse behaviours [milking unit kick-off (KO)] and undesirable 
events [incomplete milking (INC), teat cleaning failure (TCF)] would be most frequent 
in primiparous cows that are starting their lactation, as compared to older cows. We 
also envisioned that there is variation in these behaviours associated with the cow’s 
breed. In consequence, the objective of this study was to compare the dynamics of 
milking behaviour during the early lactation of Holstein (HO) and Jersey (JE) cows in 
an automatic milking system with a semi-voluntary batch milking design.

This retrospective observational study included information from milking events in 2,138 
cows from May to December 2023 in a grass-fed organic certified herd in Texas, USA.  
Milking behaviour information for the first four weeks of lactation included incomplete 
milkings (%), milking unit kick-off (%), and teat cleaning failure (%), collected from 
DelPro software (DeLaval, Sweden) and used as a proxy for habituation to the milking 
routine and system. 

Cows were moved to the milking barn by grazing group twice per day, where they could 
select their milking visits among 22 robots (DeLaval, Sweden). Parity [primiparous 
(PRIM) and multiparous (MULT)] and calving data were extracted from PCDART 
software (DRMS, NC, USA). 

Data exploration and descriptive analyses for the variables in analysis were performed 
using R, version 4.2.2 (R Core Team, 2022) using the lmer4 (Bates et al., 2015), 
lmerTest (Kuznetsova et al., 2017), and emmeans (Lenth, 2022)  packages. Data 
were analysed by logistic regression to assess the differences in milking behaviour 
between PRIM and MULT cows within two breed groups (HO and JE) in weekly intervals 
following calving (W1; W2; W3; and W4). Cow ID was considered as random effect 
for adjustment. Potential interactions were tested and removed from the models when 
not significant. Average milking trait values were compared using Tukey-adjusted 
pairwise comparisons. Statistical significance was assessed at P < 0.05 level using 
a likelihood ratio test.

After edits, 28,165 milking records were analysed in 2,138 cows (27% primiparous; 
73% multiparous). The frequencies of undesirable milking behaviours (INC; KO; and 
TCF) were greatest in PRI cows in both HO and JE during most of the weekly periods 
(Figure 1 and Figure 2). The greatest frequencies of INC per milking event were in PRI 
cows during W2 (HO = 8.6% and JE = 12.0%). The greatest frequencies of KO were 
also in PRI during W1 (HO = 10.2%; JE = 17.2%), while the greatest TCF for HO and 
JE were 8.38% (W1) and 4.98% (W2), respectively. 

In HO, the odds (95% confidence interval) of INC were greater for PRIM compared 
with MULT cows during W2, W3 and W4 (Table 1). Similarly, in JE the odds of INC 
were greater for PRIM for all the weekly periods (Table 2). The odds of KO were 
greater in PRIM HO during W1, W2, and W3. In JE, the odds of KO were greater in 
PRIM during all the weekly periods (Table 4). Finally, the odds of TCF were greater 
in PRIM HO during W1 and W2. In JE, the odds of TCF were greater in PRIM during 
W1, W2, and W3.

Material and 
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Figure 1. Frequency (%) of incomplete milking (top panel), milking unit 
kick-off (middle panel), and teat cleaning failure (bottom panel) in 
primiparous versus multiparous Holstein cows by week postpartum.  

 

 

 

 
 

Figure 1. Frequency (%) of incomplete milking (top panel), milking unit kick-off (middle 
panel), and teat cleaning failure (bottom panel) in primiparous versus multiparous 
Holstein cows by week postpartum.
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Figure 2. Frequency (%) of incomplete milking (top panel), milking unit kick-off 
(middle panel), and teat cleaning failure (bottom panel) in primiparous versus 
multiparous Jersey cows by week postpartum. 

 

 

 

 
 
 

Figure 2. Frequency (%) of incomplete milking (top panel), milking unit kick-off 
(middle panel), and teat cleaning failure (bottom panel) in primiparous versus 
multiparous Jersey cows by week postpartum.
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Earlier studies focused on cow behavior at the milking parlor are based on visual 
observation (Rousing et al., 2004; Cerqueira et al., 2017). However, the advent of 
precision technologies and in particular the precise information provided by robotic 
milking creates opportunities for the monitoring of multiple behaviors in large numbers 
of animals.

Supporting the concept of habituation to novel conditions, in a recent study, von 
Kuhlberg et al. (2020) reported that training of heifers on a phantom milking robot 
prepared the animals for being milked in the AMS, resulting in increased number of 
milking visits and a reduced proportion of animals that had to be fetched into the AMS 
for milking.

In agreement with Knees et al. (2023), in our study, occurrence of KO was greater in 
PRIM than in MULT during most of the monitoring period (up to 90 DIM). Moreover, the 
decreasing trend as primiparous cows advanced in their lactation agrees with Bremner 
(1997), which found that primiparous cows moved and kicked more frequently during 
the first 7 milkings than during subsequent milkings. 

Overall, the results from the current study highlight the differences in milking behaviour 
during the early lactation of primiparous vs. multiparous cows in both Holstein and 
Jersey cows. As anticipated, the magnitude of these differences decreased as the 
lactation advanced, which may be associated with the process of habituation to milking 
during the first lactation. The greater disparity between primiparous and multiparous 
reported in Jersey compared with Holsten cows may relate to differences in udder 
conformation, incidence of udder oedema, body size, or temperament.

A better understanding of these undesirable behaviours using data originated from 
automatic milking systems, as well as research exploring strategies to reduce their 
incidences during early lactation, could result in improved transition of first parity cows 
into milking. 

 

Table 1. Adjusted odds ratios (OR) and 95% CI for incomplete milking, milking unit kick-off, and teat cleaning 
failure in primiparous versus multiparous (reference) Holstein cows by week postpartum.  
 

Week Incompletes  Kick-offs  Teat cleaning failure 
 OR 95% CI P-value  OR 95% CI P-value  OR 95% CI P-value 

1 1.64 0.62-3.87 >0.05  3.42 1.74-6.62 <0.001  2.05 1.02-3.92 0.04 
2 2.39 1.72-3.31 <0.001  2.28 1.66-3.12 <0.001  1.98 1.39-2.80 0.0002 
3 1.63 1.21-2.18 0.002  1.83 1.35-2.48 0.001  1.05 0.73-1.50 >0.05 
4 1.65 1.20-2.25 0.002   1.34 0.96-1.84 0.08   1.35 0.91-1.97 >0.05 

 
 
 
Table 2. Adjusted odds ratios (OR) and 95% CI for incomplete milking, milking unit kick-off, and teat cleaning 
failure in primiparous versus multiparous (reference) Jersey cows by week postpartum.   
 

Week Incompletes    Kick-offs   Teat cleaning failure 
 OR 95% CI   OR 95% CI   OR 95% CI  

1 77.6 15.1-14.2 < 0.001  8.33 4.53-15.5 < 0.001  4.09 1.35-11.5 0.01 
2 7.54 5.28-10.9 < 0.001  3.61 2.76-4.70 < 0.001  5.1 3.08-8.44 < 0.001 
3 3.06 2.19-4.27 < 0.001  2.43 1.90-3.08 < 0.001  2.71 1.39-5.15 0.004 
4 2.75 1.94-3.87 < 0.001   1.69 1.30-2.18 <0.001   1.75 0.84-3.47 > 0.05 
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Making informed management decisions about mating and culling cows impacts farm 
financial performance and the health and welfare of cows. There is now an opportunity 
to develop next generation (‘next-gen’) decision support tools which combine genetic 
effects (e.g. breeding values), non-genetic effects and novel data sources to predict 
the future performance of cows. To ensure this next generation of decision support 
tools aligns to farmer needs, a series of focus groups and one-on-one interviews 
were held to seek feedback from 33 dairy farmers and industry stakeholders on tools 
being considered for development. A semi-structured facilitation approach was used 
to understand what information was currently being used to make decisions about 
culling and mating and gauge farmer interest in the next generation of management 
tools. Iterative thematic analysis of workshop and interviews transcripts and notes 
was then undertaken. 

As anticipated, farmers are heterogeneous in their data recording and use of data in 
decision making. Differences in approach to data use could be broadly represented 
by two distinct data user groups, “data-driven” and “data-disconnected” and a third 
overlapping data user group, “data-dippers.” Interest and demand for ‘next-gen’ tools 
varied – and appeared to be influenced by both individual farm factors and regional 
factors - though was generally positive. Individual factors also impacted whether farmers 
preferred a new culling or mating tool with no clear preference seen overall. A recurring 
theme in conversations was how interlinked mating and culling decisions are, with things 
like herd replacement rate being heavily influenced by both. All stakeholders identified 
features or data they viewed as important to include in ‘next-gen’ tools. However, less 
than half of these data sources are currently captured in the Australian dairy industry’s 
central data repository. Whilst farmers were open to new tools – feedback was clear 
that such tools should not require duplication of data entry. Data access, availability 
and integration across systems at both individual farm and industry level is a key barrier 
to ‘next-gen’ tool development and adoption. The semi-structured facilitation style 
provided opportunity for diverse feedback and insights across a range of related topics 
to be captured. Feedback from stakeholders was that the opportunity to participate in 
workshops and engage directly with researchers was highly valued. As delivering a 
‘next-gen’ tool accessible to most farmers is not yet possible, a decision has been made 
to not continue further tool development in the short term. The tool may be revisited in 
the future when data barriers are overcome. We will continue to explore other research 
that can answer some of the questions raised in this study and to ensure the findings 
of this study are disseminated to industry. 
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Making informed management decisions about mating and culling cows impacts 
farm financial performance and the health and welfare of cows. Cow performance is 
influenced by many factors including genetic effects (e.g. breeding values), non-genetic 
effects (e.g. lactation number, calving date, illness) and farming system (e.g. feeding 
system, climate). Novel data sources (i.e. sensors), continued improvements to data 
pipelines, more frequent genetic evaluations and computing advances means an 
opportunity exists to develop new decision support tools which combine genetic effects, 
non-genetic information and novel data sources to predict the future performance of 
cows. Current management tools available in Australia do not jointly consider all these 
information sources. However, a limited number of these tools have been developed 
and implemented overseas, such as in Ireland (Kelleher et al. 2015) where farmer 
feedback and uptake has been very positive (Kelleher et al. 2018).

Adoption of decision support tools by dairy farmers is contingent on them been 
valued by farmers and industry stakeholders and meeting their needs. One approach 
for ensuring tools developed are relevant and meet the needs of the end-user is to 
use a co-design process, involving stakeholders throughout a project (Moser 2016). 
The benefits of involving farmers in dairy research and extension activities has been 
previously documented by (Crawford et al. 2007). An engaged stakeholder network 
is also helpful in the development and piloting of extension resources which in turn 
can help support adoption (Newton et al. 2021). To ensure the next generation of 
decision supports tools aligns to farmer needs, a series of focus groups and one-on-
one interviews were held to seek dairy farmer and industry stakeholders’ feedback. 

A semi-structured facilitation style was used in series of workshops and interviews to 
seek feedback from 33 dairy industry stakeholders to understand farmer interest in 
“next-gen” (next generation) management tools from December 2023 – April 2024.

Twenty-three dairy farmers and 10 service providers were interviewed via 5 workshops 
– 4 targeting farmer participation and 1 targeting service provider participation. A 
further 7 one-on-one interviews were conducted, primarily with participants who were 
unable to attend workshops. Several approaches were used to recruit participants. 
Targeted emails were sent to 2 mailing lists; a network of service providers providing 
reproduction advice to farmers, and farmers participating in the genomic information 
nucleus program in Australia (and therefore known to be actively engaged in good 
data recording practices). Dairy Australia regional extension staff based in major 
dairy regions were approached for support to hold regionally specific workshops. 
This supported including generalised workshop promotion and targeted invitations to 
encourage participation in workshops from stakeholders with diverse backgrounds. 
Two workshops in Northern Victoria and 1 interview (Melbourne) were conducted in 
person, with the remainder completed online. 

Using a semi-structured facilitation style, these sessions first sought to understand 
what information farmers were currently using to make decisions on culling and mating. 
Participants were then introduced to the concept of ‘next-gen’ management tools, shown 
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an overseas case study and asked questions like: “Does a tool like this interest you?”, 
“What would you like to see in a tool?” Participants were also shown some examples 
of different dairy breeding programs incorporating conventional dairy semen, female 
sex-sorted semen and beef semen and asked which best represented their business 
and how they allocated semen types. 

Iterative thematic analysis was conducted to code workshop and interviews 
transcripts and notes into categories, following Charmaz (2014). Five main categories 
were identified: current use of data; demand and interest in new tools; barriers to 
engagement; tool features and preferences and other insights. Additional analysis of 
each category sought to identify recurrent themes, differences within each category and 
possible reasons for differences. These insights are presented below. Early insights 
from the analysis were shared with key dairy stakeholders and a facilitated discussion 
held to seek their input on the implications of the findings on future project milestones 
including ‘next-gen’ tool development. 

As anticipated, farmers were heterogeneous in what data they record and how they 
use that information when making culling and mating decisions. Similarly, interest 
and demand for ‘next-gen’ tools varied – seemingly influenced by both individual 
farm factors and regional factors – though was generally positive. All stakeholders 
identified features or data they viewed as important to include in ‘next-gen’ tools. Data 
access, availability and integration across systems at both individual farm and industry 
level was identified as a key barrier to ‘next-gen’ tool development and adoption. The 
semi‑structured facilitation style provided opportunity for diverse feedback and insights 
across a range of related topics to be captured. Feedback from stakeholders was that 
the opportunity to participate in workshops and share their insights was highly valued. 
Key research findings are highlighted in Table 1, and discussed in further detail in 
subsequent sections.

On-farm approaches to decision making varied widely across workshop participants 
(and their clients). While every farmer is unique, we propose differences in approach 
to data can be broadly represented by two distinct data user groups and a third 
overlapping data user group. Key features of each proposed user group are outlined in 
Table 2. The ‘data-driven’ user group tended to take a systematic approach to culling 
and mating decisions, often using Microsoft Excel to bring together information from 
multiple on-farm software programs. In contrast, the ‘data-disconnected’ user group 
recorded limited data and appeared comfortable making decisions with incomplete 
information. The ‘data-dippers’ shared features of each group, generally recording 
some data but not necessarily using it to support decision making. This also means 
the benefits of investing time and money into collecting data are not being realised. 
‘Data-dippers’ are the users who are most likely to move between user groups - being 
at risk of becoming ‘data-disconnected’ but also having the potential to be encouraged 
to become ‘data‑driven’. Identification of user groups with differing needs that warrant 
consideration in tool design and development of research programs has been 
documented previously (Monks et al. 2021). Interestingly, we found limited external 
advice was sought in making culling decisions, but a much stronger practice of external 
advisor involvement (usually semen sales representative) occurs in mating decisions. 

Qualitative analysis

Results and 
discussion

Farmer’s current use 
of data in decision 
making varied
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A range of data sources at both individual cow and herd level were reported by 
participants as being used in making culling and mating decisions. Here, we focus on 
individual cow information. Participants most often reported using herd test (or other 
milk recording) data – especially somatic cell count and yield to make culling decisions. 
Other information used included: fertility information (i.e. days open, pregnancy test 
results), age/parity, udder health temperament, and genetics/genomics. For mating 
decisions, data used included: days in milk, age/parity, health records, genomics, 

Table 1. Summary of insights across key themes identified through qualitative analysis.
 
Table 1. Summary of insights across key themes identified through qualitative analysis. 
 

Theme Insight 
Current use of 
data 

• Farmers are heterogeneous in recording and use of data. 
• Three potential data user groups identified (Table 2). 
• Advisors often used for mating but not culling decisions. 
• Wide variety of data sources used; milk recording data most often mentioned 

Demand and 
interest in new 
tools 

• Generally positive, enthusiasm varied across data user groups. 
• Appeared to be influenced by herd dynamics, economic, social, and business 

factors. 
• Mating and culling seen as interlinked (Figure 1), no overarching preference 

for one tool seen. 
• Need to illustrate value of tool highlighted. 

Tool features 
and preferences 

• Range of data sources and features for tool identified (Table 6). 
• Less than half of requested data currently captured in central data repository.  
• No requirement to duplicate data entry. 

Barriers to 
engagement 

• Lack of data access, interoperability and integration across software programs 
and platforms, on-farm & at industry level. 

• Many data sources, especially novel data sources, not linked to central data 
repository. 

• Farmers do not want to have to duplicate data entry. 
• Variable levels of data recording across herds. 

Other insights • Opportunity to contribute to discussion and engage with scientists valued. 
• Gaps in education and training including inbreeding knowledge, best practice 

with sexed semen, additional uses of cow genomic test results. 
• Utilising existing events (i.e. scheduled discussion groups) effective for 

hearing diverse viewpoints.  
• Service providers had rich and valuable insights. 

 
 
  
Table 2. Overview of potential data user groups and their use of data in decision making  
 

‘Data-driven’ ‘Data-dippers’ ‘Data- disconnected 

• Responded to targeted 
emails. 

• Described systems, 
processes and strategies 
for decision making.  

• Multiple farm software 
programs. 

• Described data 
management as labour 
intensive. 

• Recording some data  
• Shared some features of 

‘data-driven’ and ‘data-
disconnected’ 

• Can move between groups. 

• Limited data recording or 
use of data in decision 
making. 

• Could have smaller herd 
size. 

• Group recognised by both 
farmers & advisors. 

 

Use of data in decision making 
• Used multiple data 

sources, often compiled in 
Microsoft Excel. 

• Data not often used in 
decision making. 

• Make decisions on 
limited/incomplete data. 

 
  

Table 2. Overview of potential data user groups and their use of data in decision making.
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phenotypic attributes (i.e. confirmation) and data from heat detection devices (i.e. 
collars). A key question farmers reported asking themselves when making mating 
decisions was; “Do I want to breed a replacement from her?”

Participants responded positively to proposed new tools and opportunities to bring 
genetic, non-genetic and environment information together in one place, with beliefs 
like: ‘there’s no one tool that integrates all of that data,” and that, “It would be easier to 
have one app or one tool which gives you all the information.” However, variation existed 
amongst participants. ‘Data-driven’ users saw value in the more systematic approach 
‘next-gen’ tools would offer, the opportunity to compare their current approaches to 
proposed tools, and were enthusiastic about opportunities to engage further with the 
project. The next most interested user group ‘data-dippers’ appeared to see most 
value in having something that would help them bring their existing data together, with 
one participant saying that while they collected all the information, they weren’t really 
using it in decision making so; “I (they) would find that tool very handy, we collect all 
that data, would be good to have the snapshot”. The ‘data-dippers’ are perhaps the 
most significant target audience for these tools because such a tool could help them 
move into ‘data-driven’ user group. Adoption by this user group could deliver greater 
potential benefits to the individual and industry than adoption by the ‘data-driven’ user 
group who already have manual processes to bring their data together. Finally, as the 
‘data-disconnected’ group are comfortable making decisions with little or no data, it will 
be much harder to develop a successful value proposition to collect data and use it in 
tools.  There are emerging opportunities for this group to ‘passively’ record more data 
via new technologies such as automated dairy equipment, sensors and virtual fencing, 
i.e. Bell and Tzimiropoulos (2018); Cabrera and Fadul-Pacheco (2021).

A recurring theme in conversations was how interlinked mating and culling decisions 
are. Key factors participants articulated that impacted both culling and mating decisions 
included: herd replacement rate, optimum herd age structure, herd reproductive 
performance, markets for non-replacement animals and calving pattern (extended 
lactations). The linkages between these factors and culling and mating decisions is 
shown in Figure 1. This connectedness could also contribute to why it was hard to 
see an overall clear preference across all participants for either a culling or a mating 
tool. However, participants were divided on value of a combined culling and mating 
tool with some fearing it could become too complicated.

Farmers’ interest in the proposed tools – and their decisions about culling and mating 
– appeared to be context-specific in that it related to their current herd dynamics, 
business circumstances, social factors and market conditions. Herd fertility came up in 
conversations often. For example, ‘I would say that we don’t really have much choice 
in culling and breeding decisions if you don’t have good fertility,’ illustrating how herd 
dynamics may influence farmer interest in engaging with tools. Farmers who were 
already using sexed dairy semen and/or beef semen in their herds appeared more 
interested in the proposed mating tool. However, this interest was in turn influenced 
by availability of markets for dairy-beef calves or surplus heifers which varies from 
season to season. The development stage the dairy business was also a consideration.  
For example, a business focused on growing herd size had limited use for a culling 
tool and was less likely to be investing in data capture. The relevance of tools in the 
context of the time of year, was also mentioned. For example, it was suggested that in 
Tasmania there were more potential applications of tools to support culling decisions 
in Autumn as involuntary culls (i.e. empty cows, chronic mastitis and lameness) have 
already been removed from the herd. Changing demand and interest in tools over 
time aligns with our previous research (Newton et al. 2021). Also, while participants 
could see value in a tool, feedback was received that for farmers to engage with a 

Individual farm and 
regional factors 
appeared to influence 
demand and interest 
in ‘next-gen’ tools



72

Stakeholder engagement to support the decision tools

Proceedings ICAR Conference 2024, Bled

tool they needed to perceive that the tool will provide them benefits and value above 
current process. The importance of education and extension resources that illustrated 
this was also discussed. 

Where interest in proposed tools existed, participants clearly articulated features of 
tools or required data inputs they saw as most important. This included: 

1.	 Milk yield, fat and protein from herd test results.

2.	 Alternate milk recording sources (in line meters and automatic milking system).

3.	 Mid-infrared (MIR) spectral data (including MIR Conception tool (Ho and Pryce 
2020)).

4.	 Clinical mastitis cases and somatic cell counts.

5.	 Other health information (i.e. lameness, metritis, antibiotic use).

6.	 Fertility (i.e. insemination events, calving events, calving interval).

7.	 Pregnancy scanning results.

8.	 Novel sensor data (i.e. collars and smart tech).

9.	 Genetic and genomic information (i.e. breeding values).

10.	 On-farm software recording systems

Figure 1. Diagrammatic illustration of some of the linkages between mating and culling decisions on farm and 
some of the other factors influencing that decision. Three core questions are shown in green text boxes, grey 
and white text boxes show some of the factors impacting the answer for those questions. 

 

 
 
Figure 1. Diagrammatic illustration of some of the linkages between mating and culling 
decisions on farm and some of the other factors influencing that decision. Three core 
questions are shown in green text boxes, grey and white text boxes show some of the factors 
impacting the answer for those questions.  
 

Participants 
articulated many 
features of ‘next-gen’ 
tools they saw as 
important
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11.	 Temperature-humidity records.  

12.	 Economic parameters.

Of primary importance was the ability to draw upon milk recording data captured from 
herd testing as well as inline meters and automatic milking systems. Features of the 
tool that participants identified as important included:

•	 Ability to pull data from existing sources – no duplicate data entry.

•	 Ability to consider lifetime data, not just lactation information.

•	 Account for the flow on effects of decision making (i.e. how value of extra pregnancy 
changes over a lactation, poorer conception rates with sexed semen).

•	 Ability for user to manually adjust starting parameters, economic assumptions etc.

•	 A dashboard for easily visualisation. 

•	 A traffic light or grouping system to facilitate management of cow groups not 
individual cows in large herds. 

When the data sources identified through this study were cross-referenced against the 
information currently available in Australian dairy’s central data repository only 4 were 
fully accessible (1, 4, 6 and 9 in the list above), and a further 4 had partial or limited 
availability (3, 5, 7 and 10 in the list above). By 2026, improved accessibility was only 
expected from: addition of milk recording data from in-line meters and automatic milking 
machines, and improvements to availability of MIR spectral data. Not all milk samples 
are processed on machines with MIR capabilities. Historically, only data collected from 
Bentley machines has been utilised with incorporation of data from FOSS brand MIR 
machines in DataGene’s 2023/24 Operating Plan (DataGene 2023). Data access, 
availability and integration was identified as a key barrier to ‘next-gen’ tool development 
and usage and will be discussed further in the next section. 

“I was thinking the last 20 years have been very, very bad for data in Australia because 
now we’ve got data sitting in many places and almost no one’s talking to each other.” 
These sentiments shared by a service provider highlight the biggest barrier to ‘next-gen’ 
tool development. At individual farm level as well as wider industry level, data access, 
interoperability and integration across software programs and platforms was identified 
as a key barrier to development and uptake of ‘next gen’ tools. Participants were very 
clear in the message that they did not want to have to duplicate data entry - a point 
raised during nearly all workshops; ‘the biggest issue I’ve got is how certain systems/
apps don’t talk to one another. How does it get into the system without having to double 
handle it?’ A key implication of this is that any tool developed needs to integrate into 
existing data pipelines. This represents a significant challenge. There is also no easy 
way to combine data from different farm software systems on-farm. This is challenge 
shared by dairy herds and other farming enterprises globally (Wolfert et al. 2017). This 
means that not all data is being used in decision making – especially for data user 
groups lacking skills set or motivation to manually combine data themselves. 

Compounding this challenge, not all data collected on-farm is currently entering the 
central data repository in Australia. For example, veterinarians provided feedback that 
much health information is missing from the repository, believing a major barrier was 
health record data formats not aligning to data formats/reporting structures used for 

Data access, 
availability and 
integration is a key 
barrier to ‘next-gen’ 
tool development
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transferring data in and out of the repository. The proprietary nature of some data being 
collected by new technologies (i.e. heat detection collars and automatic milking systems) 
hinders development of data sharing agreements (and pipelines) and makes data 
centralisation difficult. Big variation in digital literacy also exists and service providers 
advised that it is likely that some data is still being captured on paper only. The ongoing 
use of paper-based records in dairy recording has previously been identified by Zottl et 
al. (2015). Such data challenges are not unique to either Australia or the dairy industry, 
as previously reviewed by Wolfert et al. (2017). Locally, the DataConnect project 
aims to explore opportunities for the Australian herd improvement industry to work 
pre-competitively on data exchange and integration (DataGene Pty Ltd. 2023). More 
broadly, initiatives like iDDEN (International Dairy Data Exchange Network) which was 
launched in 2020 with the aim of streamlining data exchange between dairy herds, milk 
recording organisations, dairy equipment manufacturers, farm software providers and 
other service providers have potential to help address these challenges (Reents and 
Pekeler 2021). While these initiatives are encouraging, overall the dairy industry has 
made slow progress in adopting data integration technologies (Cabrera et al. 2021). 
So, at present this remains a key barrier to successful development and adoption of 
‘next-gen tools’ in Australia. 

A further challenge to ‘next-gen’ tool development highlighted by participants was the 
need to build a tool that can accommodate the big variability in the amount on-farm 
data captured by individual farms. A key point made was that the farms that would 
benefit most from ‘next-gen’ tools may not be collecting the data needed to drive the 
tool effectively (i.e. ‘data-disconnected’) users. For this user group it was suggested that 
support to determine basic parameters such as herd replacement rate would be helpful. 
In comparison, while time savings could be expected for ‘data-driven’ user group, the 
value gained from improved decision making would be smaller. Possible solutions 
included: developing a tool that accommodates variable levels of data recording, for 
example a tiered tool with access determined by data recorded. A further discussion 
point was whether Australia needed more mandatory recording on-farm. Whilst likely to 
receive negative pushback from some farming groups, mandatory recording is widely 
used throughout Europe and additional recording may also soon be required as part 
of anticipating greenhouse gas emissions reporting requirements. 

The semi-structured facilitation style created opportunities to uncover valuable feedback 
on areas related to culling and mating. In addition to the discussion around optimum 
replacement rate and herd age structure discussed previously, feedback on the need for 
ongoing education and training was received. Areas highlighted by participants included: 

1.	 understanding what best practise use of sexed semen is, including access to more 
resources and case studies; 

2.	 how to use genomic data to make decisions in the milking herd (i.e. uses beyond 
choosing heifer replacements); and 

3.	 limited knowledge about the impact of inbreeding, where to seek advice or report 
concerns about potential new lethal/detrimental conditions. 

A further finding from this approach was the value that participants placed on having 
access to a forum to discuss the use of data in decision-making and the opportunity 
to engage directly with researchers. One discussion group provided feedback that it 
was the first time a scientist had attended one of their monthly meetings in 14 years of 
discussion group operations. Another participant said, “it’s not often I get to sit down 
and have a discussion with a geneticist…. Probably the first time we’ve done it, I’m 

Semi-structured 
facilitation style 
provided diverse 
insights across many 
areas
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enjoying it.” These findings are supported by a recent review of literature on agricultural 
adoption which found scientists can influence adoption by engaging with a range of 
service providers, supporting group learning (i.e. discussion groups) and through direct 
involvement with on-farm trials and demonstrations (Nettle et al. 2022).

One limitation of this project is the potential for bias in respondents, however several 
approaches were used to help with getting feedback from a representative sample. 
Firstly, including service providers in the participant group. With a large client base, 
often over multiple dairy regions, they provided perspectives representing a diverse 
cross-section of dairy farmers and were a rich and valuable source of information. 
Farmers who respond to an open invitation to discuss ‘next-gen’ management tools 
are already likely to be motivated to engage with these tools. The second approach, 
tapping into existing events, such as dairy discussion group meetings, was found to 
be an effective strategy to hear more diverse viewpoints in workshops. Participation 
at these events was driven by other activities of the discussion group such as a free 
lunch, discussing regional challenges and peer-to-peer learning. 

The stakeholder engagement work undertaken here has found participant interest and 
demand for ‘next-gen decision support tools – to enable more informed mating and 
culling decisions – varied, though has generally positive. Individual farms’ current data 
recording practices, business stage, herd and economic factors appear to influence 
interest in the tools being proposed with no clear consensus on whether greater demand 
for culling or mating tools existing overall. A key barrier identified in this study was 
lack of data integration and access across software platforms on-farm and at lack of 
pipelines to aggregate data in the central data repository - particularly for novel sensor 
devices. Coupled with a clear message that farmers do not want to double enter their 
data, this represents a major barrier to being able to compile the dataset needed to 
develop ‘next-gen’ decision support tools. Low levels of data recording in some herds 
and limited data aggregation will also hinder the number of farms able to use the 
tool. When these insights were reviewed by funders and key stakeholders, a decision 
has been made to not continue further tool development in the short term. This is 
primarily due to the fact delivering a ‘next-gen’ tool accessible to most farmers is not 
yet possible and other industry priorities have since emerged. Attention now turns to 
ensuring the findings of this study are documented and disseminated – particularly to 
support industry initiatives to improve data connectedness. We will continue to explore 
other work that may be possible to answer some of the questions raised in this study. 
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Beef cattle breeding accounted for 3.7 million cows in France in 2022 (1), including 
1 million with certified pedigree (CPB), and 435,000 in Beef Cattle Recording (BCR). 
Each year (2022), more than 1 million calves were weighed up to weaning, giving 
331,000 Adjusted Weights at 210 days (AW210). In 2021, the CALPAT project provided 
new flexible rules for calculating AW and a reliability indicator was developed (2). 
These recent developments have increased the number of AWs but have heightened 
the already existing difficulties for technicians and breeders to plan weighing sessions. 
To solve these problems and facilitate weighing planning, the PATApi project was 
adopted by «France Genetique Elevage», to provide a high-performance tool for 
planning weighings up to weaning.

At the beginning, we initially focused on the needs of network advisors with regard to 
weighing planning. The main features expected from the algorithm are: 

•	 A forecasting tool, able to provide theoretical weight dates based on the previous 
year’s births. 

•	 Regular updates based on actual births and weighings. 

•	 A list of animals with dates of birth and parameters.

At the output, provide optimal passage dates, decision-support elements such as 
the ratio of animals with AWs, their average reliability, and graphical representations 
enabling dynamic adjustment by the user.

At the same time, an exploratory analysis of available methods identified the 
exhaustive search for dates as a solution, particularly for providing dynamic graphical 
representations. However, this method would involve considering more than 4 billion 
possible combinations for a 4-month distribution of births and require 4 different 
passage dates to estimate AWs. An initial optimisation phase enabled us to detect 
the optimum periods (represented by their median date) rather than the exact dates, 
and to considerably reduce the number of combinations tested. Finally, the stochastic 
‘simulated annealing’ method completely adapted to this problem, provided the optimum 
number of weighings and the corresponding weighing dates, with a very significant 
improvement in calculation times. On the downside, this method does not allow dynamic 
adjustment by the user. In practice, the performances obtained are satisfying between 
3 and 5s for a farm of 60 animals with 3 weighing dates.

Once improved, this algorithm, developed in R language, was packaged and 
encapsulated in an API. This will interact with any software able to transmit a list of 
animals and the expected input parameters. Commissioning is expected as from 2024 
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and it will facilitate the work of technicians and breeders alike from the start of the next 
birth campaign.

Keywords: algorithm, weighing planning, adjusted weight, beef cattle recording. 
Presented at the ICAR Anual Conference 2024 in Bled at the Session 1b: Decision 
Support Tools of the Future – Promoting Sustainability Farm Management 

In 2022, Beef Cattle Recording (1) in France accounted for 6,119 breeders and almost 
435,000 cows in VA4. The VA4 formula, which combines weighing and scoring around 
weaning, concerned around 14% of calves born in France. Around 400,000 pre-weaning 
Adjusted Weights (AW) are calculated each year for just over 1 million weighings, 20% 
of which are carried out by the farmers themselves. This represents an average of 
2.5 weighings for pre-weaning AWs (AW120 days or AW210 days).

Over the last ten years or so, the Beef Cattle Recording business has undergone a 
threefold change:

• 	 Breeders’ expectations of services are increasingly heterogeneous,

• 	 Farms are becoming more specialised, herd sizes are increasing, and labour is 
becoming scarcer, all of which tends to increase the constraints involved in carrying 
out the weighing required to obtain technical and genetic results,

• 	 Breeding Societies (BSs), the prime contractors for Beef Cattle Recording, want 
data collection to be able to meet the selection objectives of their breeds, bringing 
a new differentiation in process management. 

These three points illustrate the major changes underway in Beef Cattle Recording 
at every level. 

The aim of weighing planning on farms is to obtain as many AWs as possible (AW120 
days, AW210 days or both), and as reliably as possible (2) with as few weighings as 
possible, depending on the distribution of births. 

To identify user expectations, a stakeholder consultation was organised.  After that, 
5 main principles were retained: 

• 	 The algorithm must allow for a predictive simulation of the dates of passages at the 
start of the campaign, based on the births of animals from the previous year (N-1). 

• 	 It must then be possible to adjust the schedules during the season according to the 
actual births on the farm and any weighings carried out, depending on the date of 
the scheduling request.  

• 	 It must be able to consider the exclusion of periods from the planning (e.g. summer 
grazing or grassing phase) and early exits of animals.  

• 	 It must be able to operate autonomously based on an API that can be used by any 
application, based on the minimum data transmitted as input.

• 	 It must offer the possibility of weighting the number of weighings required and their 
positioning according to the situation of the farm and its structure. 

Introduction

Material and 
methods

Collecting user needs 
and expectations
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The algorithm was developed iteratively. Regular exchanges between the teams 
(development, management, users) meant that progress could be made step by step, 
considering the expectations and constraints expressed.

The algorithm needs 3 files to run (Figure 1).

• 	 The first input file concerns the characteristics of the calculation request. It contains 
the identifier of the farm and the organisation to which it belongs, the season and 
breed concerned, and the date and group of the calculation request.

• 	 The calculation parameters are contained in the second file. They specify the AWs 
to be optimised (search for dates to obtain the maximum of AWs) and the minimum 
level of reliability of the AWs required. It also contains the dates that are potentially 
forbidden for weighing (unfavourable periods) or those that are desired, the usual 
exit ages for calves and the number of weighings envisaged (0 lets the algorithm 
decide). Finally, it also allows to configure the output according to the desired level 
of detail.

• 	 The last input file concerns the characteristics of the animals on the farm. It contains 
their birthdate and previous weighing dates, whether they should be excluded from 
the planning and whether their birth weight can be used in the AW calculation as 
first weight.

Developing the 
algorithm in R

Algorithm input

Figure 1. Algorithm input files.
  

Figure 1. Algorithm input files. 
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A Sorting and Selection Index (SSI) has been proposed to help objectively choose the 
best solution. It combines the ratio of AWs obtained, the level of their reliability and 
the number of weighings required. The SSI is expressed as a value between 0 and 1. 
Two equations are proposed, depending on whether optimisation of a single or both 
AWs (AW120 or AW210) is desired:

• 	 For single AW to be optimised:
 

 
  

𝑺𝑺𝑺𝑺𝑺𝑺 = 𝑨𝑨 ∗ (𝒄𝒄𝒄𝒄 + d𝑫𝑫 + 𝒆𝒆𝒆𝒆) ∗ 𝟏𝟏
√𝑱𝑱

 

• 	 For two AWs to be optimised
 

 
 

 

  
SSI= (𝑨𝑨 ∗ 𝑩𝑩) ∗ (𝒄𝒄𝒄𝒄 + 𝒅𝒅𝒅𝒅 + 𝒆𝒆𝒆𝒆) ∗ (𝒇𝒇𝒇𝒇 + 𝒈𝒈𝒈𝒈 + 𝒉𝒉𝒉𝒉) ∗ 𝟏𝟏

√𝑱𝑱 

With:

A, B: % of AWs (AW120 or AW210) respectively obtained,

C, F: % of these AWs with a high level of reliability,

D, G: % of these AWs with a medium level of reliability,

E, H: % of these AWs with a low level of reliability,

c, d and e: weights applied to each reliability level for AW120,

f, g and h: weights applied to each reliability level for AW210,

J: the number of weighings of the forecasting

The algorithm has two calculation modes: 

1.	 Exhaustive and detailed mode

	 In this mode, the calculation is based on a grid containing all solutions according 
to animal characteristics and demand parameters. The best solution is selected 
on the basis of the sorting index detailed above. This mode provides more details 
on the chosen solution, as well as elements for interactive date adjustment. On the 
other hand, it requires a longer calculation time.

2.	 Optimized mode

	 This mode speeds up the process of finding only the best solution (and results 
around +- 7 days) adapted to the input parameters. It is based on the simulated 
annealing method (1).

The algorithm output comes in 3 different forms, adapted to the expectations and 
parameters transmitted at the time of the request. In the “optimized” calculation mode 
(Figure 2), the optimal date(s) of passages associated with their SSI are returned. In 
addition, a table of animal frequencies by AW and by level is provided. Finally, results 
+/- 7 days from the optimal dates are provided to help the technician to adjust the final 
choice.

A sorting and selection 
index

Core algorithm

Algorithm outputs
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The exhaustive mode (Figure 3) provides an additional output which contains an 
extraction of the calculation grid (left of figure) enabling the reconstruction of the PAT 
frequency curves obtained according to the date on which the weighings were carried 
out.

Figure 2. Optimized outputs. 
 

Figure 2. Optimized outputs. 
  

Figure 3. Specific output exhaustive mode.

 

 
 
Figure 3. Specific output exhaustive mode. 
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Right from the start of the project, we realised that we needed to develop an

RShiny application. First, it enabled us to understand the need and its context. It was 
then very useful for considering the various parameters and constraints expressed 
by the stakeholders. Finally, it was used to test and demonstrate how the algorithm 
worked as its development progressed. 

To evaluate the algorithm’s performance, we randomly selected 45 farms from the 
1465 available in the test database. This sample included farms with 40 to 150 calvings 
and a birth spread of up to 10 months (Figure 5). 

Next, the algorithm was called upon 10 times for each mode and each of the selected 
farms. Then we calculate the median time for each farm, considering only the iterations 
with the same number of weighings.

Average performance is satisfying, particularly in “optimized” mode. Some farms take 
a long median calculation time to obtain results (up to 9s) with a large variability range. 
These are very often large farms with very spread-out birth distributions (up to 180 days). 
On the other hand, the median calculation time for medium-sized farms, even with an 
extended birth period, is less than 5s (2.4s vs 4.9s). These tests were carried out on 
a standard computer and not on a server dedicated to computing (Figure 6).

An RShiny 
application for 
testing and 
visualization

Figure 4. RShiny interface.

 

 
 
Figure 4. RShiny interface. 
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We have produced an algorithm (encapsulated in an API) that uses a livestock 
inventory to determine the ideal weighing dates. This algorithm meets the expectations 
of professionals. Its flexibility means it can be adapted to a wide range of uses. Some 
options have not been implemented in this first version, but its modular construction 
will enable its evolution in the future. The use of parallelized calculations could boost 
performance and reduce response times. This will certainly be implemented in a 2nd 
version of the algorithm.

The service is currently being implemented by FGE. The API encapsulating the 
algorithm should soon be made available to users so that their software can exploit it.

 

 
Figure 5. Sampling of test farms. 
 
  

Figure 5. Sampling of test farms.

 
  

Figure 6. Algorithm runtime in optimised mode comparison. 
 

Figure 6. Algorithm runtime in optimised mode comparison.
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Benchmarking is a widely used method that help’s in evaluating mostly technical 
results from Dairy farmers and can put your own figures into perspective. Farmers 
and consultants like it, but drawing the right conclusions is not always easy. And it is 
even dangerous if a farmer makes drastic decisions based upon it.

When benchmark is used in a correct way it can be a serious eye-opener and can 
stimulate farmers and consultants to make improvements.

Benchmarking can be done in several ways. It means you can compare your current 
data or KPI with other KPI’s. It is very important that the way the data or KPI’s are 
calculated are identical. This will avoid drawing wrong conclusions. So then we also 
have to look at the origin of the date we compare.

Values of the data presented in KPI’s will differ when you do comparisons. This is 
because the circumstances are not the same. It is important to distinguish external and 
internal circumstances. But it is also important with what other data we are comparing. 
This can be your own data in another timeframe, or other farms in the same timeframe. A 
combination of them is difficult, because then it is hardly possible to analyze the reason 
of the differences. It can and mostly will be the combination of internal circumstances 
and external circumstances. And then it is difficult to make conclusions.

A typical external circumstance is the weather, this is something that has influence on 
many aspects on the farm (extreme hot summer has a negative effect on fertility) but the 
farmer has no influence on it. Ther weather is what it is. How the farmer acts on these 
circumstances, is however in principle a choice. He can do nothing, or he can change 
things so the cows will suffer less. Other external circumstances are governmental 
regulations or diseases like bluetongue.

A typical Internal circumstance is a new barn that is built or a new herdsman that 
has started or the farm is moving to milk with robots. This has no effect on data from 
other farmers if you compare it with them. It however has an effect on your own data 
if you compare the data before and after the change of circumstances. And if all other 
circumstances stay the same, you can draw the conclusion that the

change in the values of the KPI’s is the effect of the specific circumstances that changed. 
This is in many cases not the situation because not all other circumstances stay the 
same.

Introduction

Benchmarking

Internal and 
external 
circumstances
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You can compare with your own data in another timeframe. So for example you compare 
your own data with your own data from a year ago. This can be done in several ways. 
It is important that the data is stable and in general not over too short a period. For 
example last year in December you only had 2 cows calving and you had one dead calf 
(mortality rate is 50%) and now you had 10 cows calving and you had 3 dead (mortality 
rate is 30%). You better use the rolling average over a longer period of time if you want 
to compare your current results with the ones from a year ago.

Comparisons with your own situation a year ago will always be affected by external and 
internal circumstances. (for example a new Barn and bad weather).

You can also compare your own date with other farmers in the same timeframe. This 
can have the advantage that most external factors are the same for all farms, at least 
in the same region or country. The reasoning of bad weather for having lower results 
cannot be used when all other farmers had the same bad weather.

How a farmer is acting on the external circumstances can be the reason of differences 
in the results. Some farmers will just play the role of a victim and accept the lower 
results whilst others take action to minimize the negative effect.

There are also farmers who take care that they are prepared for bad external 
circumstances which only come up occasionally or are unexpected. On the other 
hand, we all know that the weather is sometimes bad and milk prices are low. Good 
managers/businessman are prepared for what to do when this occurs. We call that 
risk management.

With this background information and the opportunity to have access to data from 
farms from different countries who are all using the same herd management software 
we can do interesting things.

This means there are no differences in the calculations. We can compare farms with 
farms in other countries. Besides that we are also able to have groups of farms who 
send in their data this year and also last year so we can see the development.

This is a unique set of data and we can learn a lot from that.

We look at exactly the same group of farms over a period of time in each country, 
we can see how the farms in the countries evolve, and we can see different focus in 
countries and the effect of it.

This data collection is there for more than 10 years and that gives us a unique report of 
the same group of farms who had the same software over a very long period.

This is possible in those countries where there is enough data so the average is stable. 
In the appendixes there are 3 examples of tables with comparable data.

The first tabie is from dairy farms (more than 100 per country lwho have sent in their 
data during Aprii.

Looking at the fertility data there is a huge difference between the Danish (20) and 
Brazilian (14) results in Pregnancy Rate.This is supported by the age at 1st calving 
with a huge difference 24.4 versus 28,7.

Where do you 
compare with?
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The first table is from dairy farms (more than 100 per country) who have sent in their data during April. 

Looking at the fertility data there is a huge difference between the Danish (20) and Brazilian (14) results 
in Pregnancy Rate. This is supported by the age at 1st calving with a huge difference 24.4 versus 28,7. 
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The 2nd data set is fram farmers who use UNIFORM a nd who have sent in their 
data in April2023 and in April2024.

lt is interesting to see the data about sustaina bility. Due to governmental regulations 
the Dutch figures show much better figures than the average.

 

 

The 2nd data set is from farmers who use UNIFORM and who have sent in their data in April 2023 and in 
April 2024. 

It is interesting to see the data about sustainability. Due to governmental regulations the Dutch figures 
show much better figures than the average. 

 

 

 
 

 

 

 

 

 

 

 



91

ICAR Technical Series no. 28

van der Bee

The 3rd data set is from groups of farms in the UK, NL , Belgium and Germany.

It is interesting to see the change in the number of cows over 10 years in the countries. 
But even more interesting is the change in the number of youngstock. In the Netherlands 
this is completely different form other countries. This is the effect of political regulations.

 

 

 

 

 

The 3rd data set is from groups of farms in the UK, NL , Belgium and Germany.  

It is interesting to see the change in the number of cows over 10 years in the countries. But even more 
interesting is the change in the number of youngstock. In the Netherlands this is completely different 
form other countries. This is the effect of political regulations. 

 

 

 

 
 

 

 

Item
Month apr-14 apr-24 apr-14 apr-24 apr-14 apr-24 apr-14 apr-24 apr-14 apr-24
Number of Farms 1204 1204 60 60 850 850 148 148 24 24
General
No. of calved animals 138 179 237 312 127 156 124 213 199 239
No. of young stock 100 114 241 351 87 81 102 150 152 172
Lactation Production
No. of animals in closed lact. 107 161 152 300 105 143 97 191 123 208
Calving age in closed lact. 3,4 3,6 3,9 3,4 3,5 3,7 3,1 3,1 3,3 3,5
305 Days production 8.672 9.579 8.572 9.029 8.629 9.501 8.948 10.044 9.014 10.354
Days in milk 351 349 350 324 351 352 349 340 344 334
% fat 4,31 4,40 4,17 4,41 4,35 4,42 4,15 4,26 4,06 4,15
% protien 3,49 3,55 3,29 3,39 3,51 3,58 3,42 3,47 3,35 3,44
Kg fat and protein 744 831 703 722 746 837 745 824 726 841
Avg. Kg Milk 9.520 10.615 9.453 9.684 9.463 10.563 9.832 11.003 9.781 11.422
Fertility
Avg. days to first heat 76 75 64 59 76 76 72 72 87 84
Avg. days to first insemination 88 90 76 70 89 92 82 82 91 92
Avg. no. of ins. for P+ 2,01 1,99 2,12 2,06 1,99 1,96 2,08 2,11 1,88 2,07
Health
Avg. cell count 189 192 183 176 180 195 187 170 241 229
% cows > 250.00 15,1 15,2 14,2 12,6 14,9 15,4 15,7 14,2 17,6 16,2
% Dead born calves 7,4 6,3 0,4 0,7 7,7 6,7 6,3 5,9 2,5 4,0
% Dead calves in 14 days 2,0 1,8 2,3 1,9 1,8 2,6 1,8 1,0
Milkproduction
Avg. kg milk per day 27,1 29,8 28,8 28,1 26,9 29,6 27,8 31,7 27,2 31,7
Avg. % fat 4,32 4,47 4,18 4,74 4,34 4,47 4,10 4,17 4,05 4,88
Avg. % protein 3,48 3,58 3,35 3,55 3,49 3,58 3,43 3,52 3,35 3,65
0 - 60 days SPP 40,1 43,7 39,5 40,1 40,2 43,6 40,7 46,6 39,7 43,8
61 - 120 days SPP 41,4 44,9 41,6 41,7 41,1 44,7 43,1 48,2 42,2 44,9
121 - 200 days SPP 41,1 45,0 42,9 42,3 40,7 44,6 43,1 49,0 41,5 47,4
201 - 305 days SPP 40,3 45,6 42,1 42,9 39,8 45,0 42,3 49,7 41,6 50,4
Avg. SSP 40,7 45,0 42,1 42,1 40,4 44,6 42,3 48,5 41,5 47,8

Farm Comparison April 2014 vs April 2024 per Country
All UK NL Belgium Germany
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Agriculture accounts for 37% of Irelands carbon emissions. The Irish government, in its 
Climate Action Plan, has set a target of a 25% reduction in emissions from agriculture 
by 2030.

One of the key challenges facing farmers, advisors and processors is having an accurate 
picture of on-farm emissions as well as understanding the potential carbon mitigation 
effects of individual farm management practices.

ICBF, Bord Bia and Teagasc are three agencies with key involvement in the 
research, implementation and promotion of best practice in the Irish agriculture 
and food industry. They have collaborated to develop an online toolkit, AgNav, 
that provides individual farmers with an individual assessment of the total 
carbon emissions of their farm and the carbon footprint of their produce.  
AgNav adopts the approach of “assess, analyse, act” to provide a holistic decision 
support tool for farmers.

1.	 Assess: AgNav is powered by access to the most accurate farm level data available 
drawing from a range of data sources. It uses certified methodology of the Lifetime 
Cycle Analysis model to calculate carbon emissions.

2.	 Analyse: The tool provides on-demand forecasting capability that allows the farmer 
and their advisor to estimate the impact on farm emissions of different carbon 
mitigation actions, such as reducing fertilizer, optimizing grazing days or reducing 
finishing age.

3.	 Act: Once the farmer, in conjunction with their advisor, has evaluated the most 
appropriate mitigation practices for their farm, AgNav provides the functionality to 
develop a farm specific action plan.

Overall the aims of AgNav are to:

1.	 Encourage and support farmers to implement climate action and sustainability 
improvement on Irish farms

2.	 Leverage the most robust inter-agency data, research and resources to drive the 
most appropriate actions tailored to individual farms

3.	 Enable the most precise capture and analysis of data allowing accurate calculation 
of action impact

4. Provide a mechanism to support the quantification of progress towards Climate 
Action Plan targets for the agri-sector

Abstract
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Support clear communications on positive progress achieved at farm level – giving 
control to farmers

A particular challenge of climate change mitigation in the context of agriculture is the 
variety of figures and data that need to be understood and acted upon e.g. total carbon 
emissions, carbon footprints, emissions targets.

There are challenges in getting a consistent, accurate assessment of on-farm emissions, 
translating sectoral targets down to individual farm level and building a farm specific 
roadmap on how to arrive at optimal best practice in carbon mitigation practices. 

These challenges need to be addressed at different levels : country, sectoral, corporate 
and farm.

For agriculture the questions to be answered include:

•	 What are the current greenhouse gas emissions for the sector ?

•	 Where are the sources of these emissions?

•	 What are the targets for the sector ?

•	 What is the pathway to achieving these targets ?

•	 What does it mean for an individual farmer ?

In Ireland, the national and sectoral targets are set by the Irish Government and set 
out in the Climate Action Plan.

The Climate Action Plan sets out a target of a 25% reduction in GHG emissions in 
Agriculture by 2023. A number of state agencies are involved in assessing how this 
target can be achieved in this timeframe.

One of these agencies is Teagasc, the national body providing integrated research, 
advisory and training services to the agriculture.

Teagasc has developed a Marginal Abatement Cost Curve Curve (MACC) to display 
the abatement potential and relative cost of different mitigation measures (Figure 1).

In the MACC, the wider the bar on the x-axis, the more carbon abatement potential 
for that action. On the y-axis if an action is below 0 it also cost-negative, if it is above 
0 then there is a cost to this measure.

The MACC outlines the activities that will have an impact at the macro level. It is then 
necessary to translate this into actions that can be undertaken at individual farm level.

This involves three steps:

1.	 Understanding where each farm is at currently in its ghg emissions.

2.	 Examining the menu of mitigation actions and see what does it mean for that farm.

3.	 Agreeing on mitigation actions and making a farm specific plan.

The components needed to underpin these three steps include:

Introduction
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•	 Robust, peer reviewed climate emission models.

•	 Validated sources of input data.

•	 Maximised use of existing data sources to avoid duplication of effort by farmers.

•	 Technical capability to run the models at scale.

•	 Advisory channels to aid in the dissemination of best practice and to provide farmer 
advice and education.

•	 Consistent approach to developing farm specific action plans that can be recorded, 
monitored and followed up.

•	 Easy to use interfaces for farmers and advisors navigating from the assessment 
of figures to the development of action plans.

The effort in drawing these components together can be aided by multi-agency 
collaboration. AgNav is such a collaboration involving three agencies in Ireland. 
Teagasc as described above, Bord Bia which is the agency that promotes Irish 
agricultural produce and manages the Quality Assurance Schemes to which the majority 
of beef and dairy farmers belong, and ICBF, which is the central database for genetic 
evaluations and for wider data services in the Agrifood sector in Ireland.

The three agencies have developed the AgNav data platform.  The contribution from 
each agency can be summarised as follows:

Teagasc: latest of the scientific research and models for calculating emissions across 
agriculture. In addition to this there is the link with the Signpost Climate Advisory 
programme, that is being rolled out across the entire industry. 

ICBF: Software engineering and database capabilities in managing data, combining the 
data from different sources, programming and running the scientific models, testing at 
scale and updating in line with the latest research. In addition to this it has to technical 
capability required for development of tools and dashboards for farmers and advisors.

Figure 1. Marginal Abatement Cost Curve – Teagasc 2023..
 

Figure 1. Marginal Abatement Cost Curve – Teagasc 2023. 
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Bord Bia:  interface with the existing Quality Assurance Schemes in which farms are 
audited  periodically across a variety of sustainability measures, providing a key source 
of validating data. In addition to this, as part of the of the Quality Assurance Schemes, 
farmers develop actions plans for their own farms across a variety of areas covering 
sustainability and animal welfare. Bord Bia is also the agency for the promotion of Irish 
agricultural produce both nationally and internationally.

The AgNav tool endeavours to assist the farmer in the three stages of :  Assess – 
Analyse – Act. 

Assess:  AgNav is powered by access to the most accurate farm level data available 
drawing from a range of data sources. It uses certified methodology of the Lifetime 
Cycle Analysis model to calculate carbon emissions.

Analyse: The tool provides on-demand forecasting capability that allows the farmer 
and their advisor to estimate the impact on farm emissions of different carbon mitigation 
actions, such as reducing fertilizer, optimizing grazing days or reducing finishing age. 
Act: Once the farmer, in conjunction with their advisor, has evaluated the most 
appropriate mitigation practices for their farm, AgNav provides the functionality to 
develop a farm specific action plan.

AgNav is available to farmers at the website https://www.agnav.ie

The user is presented with the latest carbon emissions for their farm: total emissions, 
emissions per hectare and carbon footprint. These have been calculated using existing 
data sources to which the farmer has granted permission (Figure 2).

Figure 2: AgNav – Assess: Showing the current on-farm emissions breakdown.

 

 
 

Figure 2: AgNav – Assess: Showing the current on-farm emissions breakdown 

  

https://www.agnav.ie
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The user can then investigate various mitigation scenarios. Current functionality 
includes scenario planning across the following areas:

•	 Reduction in total fertiliser use.

•	 Modification in the type of fertiliser used.

•	 Modification to slurry spreading method and time of year of application.

•	 Modification to the begin/end of the grazing/housing seasons.

•	 Modifications to the finishing age (age at slaughter) of beef animals.

Following analysis of the effectiveness of different mitigations practices, the farmer 
can navigate to the  Action Planner, and in consultation with their advisor, choose 
from a menu of options.

In the example in Figure 4 the user has opted to use protected urea. They are 
then instructed to select specific actions to help them achieve this and to set a 
target date for completion. 

The Action Plans are saved on the AgNav system to allow for monitoring and 
further follow up with their advisor.

In addition to the functionality outlined thus far, the AgNav platform development 
plan includes scenario planning in the areas of:

•	 The effects of increased genetic gain on methane emissions

•	 The effects of certain feed additives

Figure 3. AgNav – Act: Building a specific Action Plan of suitable mitigation measures.

 

 

 

Figure 3. AgNav – Analyse: Investigating the impact on emissions of different farm management practices. 
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•	 The effects of different feed concentrate levels

Further development will look at integrating soil type to assess carbon sequestration 
at farm level.

The development of the AgNav platform began in 2022 building on existing 
integrations and co-operation between the three agencies. It involved co-design 
workshops with pilot groups that included farmers and advisors.

It is now included in the training of climate advisors as part of the wider Teagasc 
Signpost Advisory programme. The Signpost Advisory Programme is a national 
advisory programme that aims to engage with 10,000 farmers each year from 
2024 in the area of climate action and sustainability with a target of 50,000 farm 
plans by 2030.

AgNav remained in closed pilot phase through 2023 and early 2024 to allow for 
training of advisors and the gradual onboarding of farmers involved in the Signpost 
Advisory Programme. It will open to all farmers in the latter half of 2024.

Future developments will see AgNav functionality extend into the sheep, pig, 
poultry and tillage sectors.

Figure 4. AgNav – Act: Building a specific Action Plan of suitable mitigation measures.

 

  
 

Figure 4. AgNav – Act: Building a specific Action Plan of suitable mitigation measures. 
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While the dairy industry is making large steps in development of new sensors, data 
platforms and analysis tools to help farmers manage their farm in a more sustainable 
way, reality is that the farmer is also using hardware on the farm that has been installed 
10-15 years ago. In the current climate of higher costs and interest rates, these old 
systems are likely to remain on farm for the years to come. “As long as it works well, 
we don’t have to replace it”. Even though the industry is working step by step on 
integrating the ICAR ADE standards, making it much easier to exchange data, many 
older systems don’t have these standards in place. 

Challenge for all providing new opportunities to the farmers is to connect to these on 
farm systems. Connecting would make it possible to provide even more powerful tools 
that combine both the data from on farm hardware, like milk meters, and new sensors 
that are completely working in the cloud. A second, important, challenge is to make 
sure data entry doesn’t have to happen in two places, as this will reduce acceptance 
of new tools. Third are the advisors of the farmer who help the farmers in analysing 
data, to have a complete understanding of the farm they need to be able to see the 
complete set of data.

During this session the aim is to provide context to the current technological environment 
of the modern dairy farmer and take a look at developments of the future. Illustrated 
with examples of how farmers using herd management software are connecting 
multiple brands of sensors, both old and new and share this data with the advisors 
around them, including:

•	 Linking on farm automation.

•	 Interface techniques.

•	 Legacy systems examples.

•	 On farm interfaces divided by age, type and number of interfaces per farm.

•	 Modern and old technologies combined.
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Bovine mastitis is an inflammatory condition affecting the udder tissue of the mammary 
gland, typically triggered by physical trauma or infections from microorganisms. It is 
the most common disease in the dairy industry, leading to significant economic losses 
due to reduced milk yield and poor milk quality (Gomes and Henriques, 2016). On 
average, the total economic loss attributed to bovine mastitis is estimated at $147 per 
cow annually, primarily due to decreased milk production and culling. This represents 
11% to 18% of the gross margin per cow each year (Hogeveen et al., 2019). Damage 
to mammary tissue, resulting in decreased milk production, accounts for approximately 
70% of these total losses (Zhao and Lacasse, 2008).

Bovine mastitis can be classified into three categories based on the degree of 
inflammation: clinical, sub-clinical, and chronic. Clinical bovine mastitis is easily 
detectable through visible abnormalities such as a red and swollen udder, and fever 
in the affected cow. The milk appears watery with flakes and clots. Clinical mastitis 
can be further subdivided into per-acute, acute, and sub-acute, depending on the 
severity of inflammation. Severe cases of clinical mastitis can be fatal. In contrast, sub-
clinical mastitis shows no visible abnormalities in the udder or milk, but milk production 
decreases with an increase in the somatic cell count (SCC). 

Mastitis significantly impacts the profitability of dairy farms. The major economic effects 
of mastitis in dairy cattle breeding include:

1.	 Decreased milk production: Mastitis reduces milk yield in infected cows, affecting 
the overall profit potential of the dairy operation.

2.	 Loss from discarded milk: Milk discarded during treatment or deemed unsuitable 
for human consumption (with SCC >200,000 cells/ml) represents a significant loss. 
A cow is not profitable unless she produces saleable milk.

3.	 Veterinary fees and drug costs: Expenses for mastitis diagnosis and treatment.

4.	 Additional labour demand and related costs: Managing infected cows, including 
veterinary treatment and health monitoring, increases labour costs, which can be 
challenging, especially when labour is scarce or expensive.

5.	 Increased risk of culling and cow mortality: Decisions to cull cows due to mastitis 
can substantially impact the dairy’s economic performance, with premature culling 
leading to significant losses.

The negative effects of mastitis underscore the importance and necessity of effective 
management and prevention strategies. The risk of mastitis onset is not constant 
throughout the productive life of a dairy cow. The dry-off period is a critical time due 

Introduction
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to a decrease in immune defences (Schukken et al., 2011). At the beginning of this 
period, the absence of physical barriers, such as keratin plugs at the nipple sphincter, 
allows mastitogenic agents to enter (Schukken et al., 2011). According to Green et al. 
(2002), 50% of environmental mastitis cases in the first 100 days of lactation originate 
from infections contracted during the dry period. Consequently, significant efforts are 
made during this period to prevent mastitis infections.

The traditional approach to preventing mastitis during the dry-off period has been 
blanket dry cow therapy (BDCT). This veterinary protocol involves two main criteria 
for dried-off cows: 

1.	 treating all udder quarters with antibiotics to eradicate existing infections at the 
time of dry-off and prevent new infections during the dry-off period, and 

2.	 using an external or internal sealant for nipples to prevent pathogen entry into 
the udder. 

BDCT is a prophylactic approach recommended to reduce intramammary infections, 
decrease the prevalence of contagious pathogens, and contribute to the overall 
reduction in bulk tank somatic cell count (SCC). While this approach ensures a robust 
risk protection, it requires high antibiotic usage and associated costs, contributing to 
microbial antibiotic resistance to both animals and humans.

The growing demand for responsible antimicrobial use and cost reduction for farmers 
promoted an alternative approach known as selective dry cow therapy (SDCT). 
This method consists in treating individual cows based on a risk factor analysis and 
administering antibiotics to cows showing infection symptoms at dry-off only. The correct 
application of the SDCT protocol reduces antibiotic by 21-60% without compromising 
health status in the subsequent lactation (Zecconi et al., 2020; Cameron et al., 2014; 
Kabera et al., 2020; Rowe et al., 2020a, 2020b). In 2019, the European Union approved 
the Prohibition of Antibiotics for Prophylaxis (EU Reg. 2019/6), officially replacing 
BDCT with SDCT.

SDCT relies heavily on a thorough assessment of mastitis risk factors at the individual 
level, primarily based on somatic cell counts and, more recently, on differential somatic 
cell counts, both produced routinely by DHI milk analysis

To promote the adoption of the SDCT approach in Italy, the Italian Breeders Association 
(A.I.A.), the official Dairy Herd Improvement Association (DHIA), developed a tool called 
“Report Asciutta Selettiva” (Selective Dry-off Report). This tool is designed to assist 
farmers and veterinarians in accurately identifying cows eligible for SDCT therapy.

The tool complies with National Veterinary Official Protocols and allows users to input 
a set of parameters and thresholds, enabling the algorithms to be customize to specific 
needs and circumstances.

The tool implies two steps: 

1.	 listing candidate lactating cows for drying-off (e.g., pregnant or low production 
cows), and 

2.	 applying protocols based on SCC and other information to select cows for treatment 
based on their specific risk.

Treatments 
against mastitis 
during dry-off

How the tool 
works
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Farmers can access A.I.A.’s performance recording data (both current and historical) 
through the dedicated software Si@lleva, which includes the selective dry cow therapy 
(SDCT) report. This tool enables farmers to select a specific date, either the current 
day or a future date, to list the candidate cows candidate for SDCT treatment based 
on two independent eligibility criteria

Among the lactating cows those with a positive pregnancy diagnosis are selected and 
their conception date is calculated to predict:

1.	 The expected calving date as “Conception date plus 283 days” where 283 days 
is the average gestation length in Italy.

2.	 The expected dry-off date as “Expected calving date minus Average farm dry-off 
period” in days, where the average farm dry-off period is selected by the farmer.

3.	 The number of days between the current date and the expected dry-off date.

If the number of days between the current date and the expected dry-off date is less 
than the average farm dry-off period, the cow is eligible for drying off. Otherwise, the 
cow is not eligible (Figure 1).

Step 1. Use 
DHI data to list 
candidate lactating 
cows to be dried 
off 

Pregnancy status

Figure 1. Identification process of lactating cows eligible for dry-off basing on pregnancy status
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The second criterion (Figure 2) for identifying cows eligible for dry-off is low milk yield. 
Cows no longer profitable for their milk production should be dried off. In this step, two 
main parameters must be set by the farmer: 

1.	 the threshold milk yield (m) below which the cow is no longer profitable (for Italian 
Friesian, the default is 14 kg), and 

2.	 the stage of the lactation curve to monitor is specified as the number of test days 
(n) after which monitoring begins (default setting:4 test days).

Daily milk yield 
individual production
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If , during the monitored lactation period the MY is less than the threshold value, the 
cow is eligible for dry-off. Farmers can modify the parameters n and m to set different 
productivity thresholds at various stages of lactation.

To select cows to be treated with SDCT among those eligible for dry-off (step 1) we 
combine data from DHI with all other available information on mastitis such as the 
California Mastitis Test or antimicrobial scans. More in detail, if DHI data only are 
available, cows will be treated if:

1.	  the average somatic cell count calculated on a fixed number of sequential Test 
Day data is above the threshold 

2.	 the value of somatic cell count is above the threshold in at least one among a fixed 
number of sequential test days

Both the number of sequential test days and somatic cell count threshold can be 
user-modifiable

One the Eligible criteria and the protocols parameters are set, the system generate 
the comprehensive report in Figure 4.

Figure 2. Identification process of lactating cows eligible for dry-off basing based on milk yield.

 

 

Figure 2. Identification process of lactating cows eligible for dry-off basing based on milk yield 

  

Step 2. Elicit 
the cows to be 
treated among the 
selected
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Figure 3. Example of a customized setting.

Figure 4. Based on one the eligible criteria and the protocols parameters are set, the system generate the 
comprehensive report.

 

Figure 3. Example of a customized setting  

  

 

Figure 4. Based on one the eligible criteria and the protocols parameters are set, the system generate 
the comprehensive report 
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The tool is freely available to all dairy farmers enrolled in A.I.A.’s official milk recording 
activity through the proprietary software Si@lleva. Each recorded farm can access all 
the information collected during milk recording up to the last test day.

Currently, about 14,000 farms are enrolled in the dairy milk performance recording 
activity. Of these, more than 500 farms (approximately 4% of the total recorded 
herds) are using this tool, involving about 7% of the total recorded dairy cows in 
Italy. The regional distribution of herds using this tool is presented in Figure 5.

Adoption of the 
tool in Italy

Figure 5. Regional distribution of herds using 
the tool.

 

 

Figure 5. Regional distribution of herds using the tool  

 

The tool is freely available to all herds participating in A.I.A.’s milk performance recording 
program. It complies with National Veterinary Official Protocols and allows the setting of 
parameters and thresholds, according to specific needs and conditions. Its availability 
promotes the adoption of the Selective Dry Cow Therapy (SDCT) in Italy, helping 
farmers and veterinarians accurately identify cows at lower risk of mastitis and reduce 
unnecessary antibiotic treatments. Of course, Veterinarians are the only professionals 
authorized to prescribe medical treatments, 

By incorporating additional diagnostic tools such as the California Mastitis Test (CMT) 
or PCR analysis, the accuracy of mastitis risk assessments and treatment decisions is 
further enhanced. This improvement will help promote best practices based on more 
precise diagnostic data still not very common.

Conclusions
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Milk fatty acid (FA) fractions, de novo (DN), mixed, and preformed (PF), are grouped 
based on chain length, as < C16:0, C16:0, and > C16:0, respectively. These groups 
reflect the origin of milk FA synthesis, with DN representing FA synthesis within the 
mammary gland, PF representing FA coming from the diet or body tissue reserves and 
mixed representing all three sources. Understanding the associations of milk FA groups 
with milk and component yields at the individual cow level may provide insight into 
making management and dietary decisions. To investigate these associations, milk 
samples (n = 14,091) were collected during the morning milkings from 1,737 Holstein 
cows from a herd milking 3x daily and averaging 41 kgs milk/cow. Milk samples were 
analyzed for FA groups (g/100g fat), fat, true protein, and lactose. Time periods of 
the first test (FT; 30 ± 2 DIM), peak milk (PT; 68 ± 31 DIM), and mid-lactation (MT; 
100 ± 2 DIM) were selected. The variance of the FA groups was calculated for each 
animal as the variance of FA proportion between tests days within the first 305 DIM. 
Linear models were fit with FA group (proportion or variance), parity (1 vs ≥ 2), their 
interaction, and DIM (FA proportion models only) as the fixed effects and the month 
of sampling (FA  proportion models) or month of calving (variance models) as the 
random effect. Across all periods, PF was positively associated with test day milk 
yield and cumulative milk yield through 305 DIM. In contrast, DN was negatively 
associated with test day milk yield and cumulative milk yield through 305 DIM across 
all periods (P < 0.1). Interestingly, increased variation in DN within cows across the 
first 305 DIM was positively associated with cumulative milk yields through 305 DIM 
(P< 0.01). The relationship between FA and component yields differed among the 
periods. Energy‑corrected milk yield had a significantly negative association with DN at 
FT (P = 0.04) and a highly significantly positive association with DN at MT (P < 0.01). 
Still, it was not significantly associated with DN at PT (P = 0.24). The fat yield was 
negatively associated with DN at FT but was positively associated with DN at PT and MT 
(P ≤ 0.01). In contrast, fat yield was positively associated with PF at FT and negatively 
associated with PF at PT and MT (P ≤ 0.03). Protein yield was positively associated 
with DN for multiparous cows, negatively associated with DN for primiparous cows 
at FT2 (P < 0.01), and positively associated with DN for all parities at MT (P < 0.01). 
In contrast, protein yield was negatively associated with PF for multiparous cows, 
positively associated with PF for primiparous cows at FT (P = 0.02), and not significantly 
associated with PF at PT and MT (P > 0.1). The association of milk FA groups with 
milk and component yields suggests that milk FA groups may be a useful management 
tool for making pen grouping decisions, cow selection and breeding decisions, and 
informing dietary adjustments. However, the variable associations between FA groups 
and milk performance outcomes by parity and at different lactation stages highlight the 
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importance of considering these factors when making decisions based on a single milk 
test. Routine milk testing across lactation may allow for tailored management decisions 
at the individual cow level using these FA groups. 

Keywords: de novo, preformed, milk analysis.  
Presented at the ICAR Anual Conference 2024 in Bled at the Session 2: New tools 
to extend the horizon of milk mid-infrared spectrometry

Of the 9.4 million dairy cows in the United States, 41.9% are on routine Dairy Herd 
Improvement (DHI) testing (CDCB, 2024). When deciding to participate in DHI testing, 
the producer must consider not only the cost of testing, but also the value of the data 
they receive. Routine DHI testing typically provides milk yield and major component 
(fat, protein, lactose, SCC) information back to the producer, but there is considerably 
more information that can be extracted from the same milk sample using the existing 
technology. Of these additional traits, milk fatty acid origin groups are already available 
on most milk analysis instruments and have been of recent interest (Dorea and 
Armentano, 2017; Woolpert et al., 2017; 2018). Milk fatty acid origin groups, de novo, 
mixed, and preformed, are grouped based on chain length, as < C16:0, C16:0, and 
> C16:0, respectively. These groups reflect the origin of milk fatty acid synthesis. De 
novo represents fatty acid synthesis within the mammary gland, preformed represents 
fatty acids coming from the diet or body tissue reserves, and mixed represents all 
three sources. At the herd level using bulk tank milk, these fatty acid groups can be 
informative when making dietary and management decisions (Dorea and Armentano, 
2017; Woolpert et al., 2017; 2018). However, less is understood about these fatty acids 
at the individual cow level. Understanding the associations of milk fatty acid groups 
with milk and component yields at the individual cow level may provide insight into 
making management and dietary decisions. Therefore, our objective was to identify the 
association of milk de novo and preformed fatty acids with milk and milk component 
production at different stages of lactation and investigate within-cow variability of fatty 
acids across lactation. 

Data were collected from a privately-owned Holstein dairy in New York, USA. Milk 
samples were collected for 18 weeks between May and September of 2023 from all 
three milkings within the day. Milk samples were analysed on the same Milkoscan 7 RM 
instrument for milk fat, true protein, lactose, de novo fatty acids, mixed fatty acids, and 
preformed fatty acids (FOSS Analytical, Hilleroed, Denmark). Milk yields were recorded 
electronically using electronic meters (SmartControl meter, BouMatic). 

The raw dataset comprised of 63,312 milk samples from 2,687 cows. Records were 
removed when > 305 DIM or < 2 DIM, component records were > 3 standard deviations 
from the mean within milking session, and when the daily record of 3 milk yields and 
component values were incomplete. The cleaned dataset consisted of 42,273 records 
representing 14,091 daily records from 1,747 cows.

Introduction

Materials and 
methods
Data collection

Data editing
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Milk fatty acids (g/100g milk) were calculated on a fat basis as:

𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 (𝑔𝑔/ 100𝑔𝑔 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚)
𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 𝑓𝑓𝑓𝑓𝑓𝑓% × 0.95  × 100 = 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 (𝑔𝑔/ 100𝑔𝑔 𝑓𝑓𝑓𝑓𝑓𝑓)    (1) 

 
  effectively calculating the milk fatty acid groups as a proportion of milk fat.

In order to investigate the associations at specific stages of lactation, the data were 
categorized as first test (FT; 30 ± 2 DIM), peak milk (PT; 68 ± 31 DIM), and mid-lactation 
(MT; 100 ± 2 DIM). Peak test represents the milk test nearest in time to the individual 
cow’s actual peak milk production. The first morning milk sample was used for fatty 
acid proportions to better reflect normal DHI test day data.

Data analysis was conducted using the lmer package of R 4.3.1 (R Core Team, 2024). 
For each production outcome, the model contained the fixed effects of fatty acid 
proportion (de novo, mixed, or preformed), parity (primiparous or multiparous), their 
interaction, day in milk, and the random effect of month of sampling.

Individual cow variation in fatty acid proportion across lactation was calculated in two 
steps. First, a Wilmink curve was fit for each cow using all fatty acid data and the 
deviance was determined as the difference between the observed and predicted values. 
Second, the variance was calculated as the log variance of the deviance values. For 
each production outcome, the mixed model contained the fixed effects of fatty acid 
variance, parity, their interaction, mean fatty acid proportion, and the random effect 
of month-year of calving.

Overall, mean (SD) lactation number was 2.4 (1.4), representing cows from 1 to 9 
lactations.

Mean milk production was 47.0 kg (9.2 kg), 50.4 kg (9.3 kg), and 46.4 kg (8.7 kg) 
at FT, PT, and MT, respectively (Table 1). Mean 305-day cumulative milk yield was 
13,177 kg (2,041 kg). Proportion of de novo fatty acids was lowest at FT and greatest 
at MT, whereas proportion of preformed fatty acids was greatest at FT and lowest at 
MT (Table 1). 

De novo fatty acids were significantly associated with milk and component yields 
across all periods. At FT, there was a significant interaction of de novo fatty acids 
and parity on test day and 305-day cumulative milk yields, in which the association 

Statistical analysis

Results

 
Table 1. Descriptive statistics of production performance and fatty acids (FA) at the selected lactation 
stages: first test (30 ± 2 DIM), peak test (68 ± 31 DIM), and mid test (100 ± 2 DIM). 
 

 First Test Peak Test Mid Test 
Variable1 Mean SD Mean SD Mean SD 
De novo FA, % of fat 25.4 2.5 26.5 2.0 27.2 1.8 
Mixed FA, % of fat 37.7 2.9 39.5 2.4 40.9 2.3 
Preformed FA, % of fat 37.0 4.8 34.0 4.0 32.0 3.4 
Test day yield, kg 47.0 9.2 50.4 9.3 46.4 8.7 
Test day fat yield, kg 1.9 0.4 2.0 0.4 1.8 0.3 
Test day ECM, kg 50.4 9.2 53.1 8.5 49.4 8.0 

1 Energy Corrected Milk = Yield × 0.3237 + Fat × 12.95 + Protein × 7.65. 

 
  

Table 1. Descriptive statistics of production performance and fatty acids (FA) at the selected 
lactation stages: first test (30 ± 2 DIM), peak test (68 ± 31 DIM), and mid test (100 ± 2 DIM).
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was negative for both parties but more negative for primiparous animals (P ≤ 0.01; 
Table 2). Test day and cumulative milk yields were negatively associated with de 
novo fatty acids at PT and were negatively associated and tended to be negatively 
associated with de novo fatty acids at MT, respectively (P ≤ 0.06). Association of de 
novo fatty acids with component yields changed based on the DIM period. Milk fat yield 
and de novo fatty acids were negatively associated at FT (P ≤ 0.01), not associated 
at PT (P = 0.68), and positively associated at MT (P ≤ 0.01). Energy corrected milk 
yield followed similar patterns, although there was a significant interaction of de novo 
fatty acids and parity at FT, wherein ECM was negatively associated for both parities 
but more negative for primiparous animals. There was a significant interaction of de 
novo fatty acids and parity on milk protein yield at FT, in which multiparous animals 
had a positive association and primiparous had a negative association with yields of 
milk protein (P ≤ 0.01). Later in lactation at MT, there was a positive association for 
all parities with de novo fatty acids and milk protein yield. 

Preformed fatty acids were also significantly associated with milk and component yields 
across all periods. Generally, the opposite association was detected for preformed 
fatty acids compared with de novo fatty acids. Test day and 305-day cumulative milk 
yields were positively associated with preformed fatty acids across all three periods 
(P ≤ 0.01). Yields of ECM were positively associated with preformed fatty acids at 
FT and PT but tended to be negatively associated at MT (P ≤ 0.07). Milk fat yields 
were positively associated with preformed fatty acids at FT (P ≤ 0.01) and negatively 
associated with preformed fatty acids at MT (P ≤ 0.01), but an interaction between 
preformed fatty acids and parity was detected at PT (P = 0.03). The interaction effect 
indicates a positive association for multiparous cows and a negative association 
for primiparous cows at MT for fat yield. Different associations by parity were also 
observed for milk protein yield at FT, wherein yields of milk protein were negatively 
associated with multiparous cows and positively associated with primiparous cows for 
preformed fatty acids (P = 0.02). At PT and MT, milk protein yield was not associated 
with preformed fatty acids (P > 0.1).

Table 2. Least square means and standard errors of production performance for de novo fatty acids 
(FA) at the selected lactation stages: first test (30 ± 2 DIM), peak test (68 ± 31 DIM), and mid test 
(100 ± 2 DIM).

 
Table 2. Least square means and standard errors of production performance for de novo fatty acids (FA) at 
the selected lactation stages: first test (30 ± 2 DIM), peak test (68 ± 31 DIM), and mid test (100 ± 2 DIM). 
 

 FA Parity Interaction P-value 
Yield1, kg Mean SE Mean SE Mean SE FA Parity Int. 
First Test 

         

Milk -0.39 0.14 1.19 6.76 -0.68 0.28 0.01 0.86 0.01 
Fat -0.03 0.01 -0.54 0.03 

  
<0.01 <0.01 

 

Protein 0.009 0.004 0.23 0.18 -0.02 0.01 0.02 0.22 <0.01 
ECM -0.31 0.15 2.71 7.05 -0.71 0.29 0.04 0.70 0.01 
305-day -113 45 2682 2024 -234 82 0.01 0.19 <0.01 
Peak Test 

         

Milk -0.53 0.14 -14.72 0.62 
  

<0.01 <0.01 
 

Fat -0.002 0.01 -0.36 0.03 
  

0.68 <0.01 
 

Protein 0.004 0.004 -0.33 0.02   0.27 <0.01  
ECM -0.16 0.14 -11.92 0.67 

  
0.24 <0.01 

 

305-day -151 46 -3167 222 
  

<0.01 <0.01 
 

Mid Test 
         

Milk -0.39 0.18 -11.67 0.65 
  

0.03 <0.01 
 

Fat 0.04 0.01 -0.30 0.02 
  

<0.01 <0.01 
 

Protein 0.012 0.005 -0.28 0.02   0.01 <0.01  
ECM 0.44 0.16 -9.90 0.58 

  
0.01 <0.01 

 

305-day -128 67 -2817 234 
  

0.06 <0.01 
 

1 Energy Corrected Milk = Yield × 0.3237 + Fat × 12.95 + Protein × 7.65 
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Table 3. Least square means and standard errors of production performance for preformed fatty acids 
(FA) at the selected lactation stages: first test (30 ± 2 DIM), peak test (68 ± 31 DIM), and mid test 
(100 2 DIM).

 
Table 3. Least square means and standard errors of production performance for preformed fatty acids (FA) 
at the selected lactation stages: first test (30 ± 2 DIM), peak test (68 ± 31 DIM), and mid test (100 ± 2 DIM). 
 

 FA Parity Interaction P-value 
Yield1, kg Mean SE Mean SE Mean SE FA Parity Int. 
First Test          
Milk 0.36 0.06 -15.43 0.60   <0.01 <0.01  
Fat 0.01 0.003 -0.52 0.03   <0.01 <0.01  
Protein -0.002 0.002 -0.73 0.15 0.01 0.004 0.22 <0.01 0.02 
ECM 0.26 0.06 -14.62 0.63   <0.01 <0.01  
305-day 81 21 -7024 1622 104 42 <0.01 <0.01 0.01 
Peak Test         

 

Milk 0.40 0.07 -14.83 0.61   <0.01 <0.01 
 

Fat 0.01 0.003 0.15 0.23 -0.01 0.01 0.06 0.52 0.03 
Protein 0.000 0.002 -0.34 0.02   0.81 <0.01  
ECM 0.18 0.07 -12.14 0.66   0.01 <0.01 

 

305-day 104 23 -3186 215     <0.01 <0.01   
Mid Test         

 

Milk 0.37 0.09 -12.07 0.64   <0.01 <0.01 
 

Fat -0.02 0.003 -0.30 0.02   <0.01 <0.01 
 

Protein -0.003 0.002 -0.29 0.02   0.22 <0.01  
ECM -0.16 0.08 -10.07 0.59   0.07 <0.01 

 

305-day 105 35 -2881 227     <0.01 <0.01   
1 Energy Corrected Milk = Yield × 0.3237 + Fat × 12.95 + Protein × 7.65 

 
  

Table 4. Association of within cow variance in de novo and preformed 
fatty acids with 28-day and 305-day cumulative milk yields.
Table 4. Association of within cow variance in de novo and preformed 
fatty acids with 28-day and 305-day cumulative milk yields. 
 

Cumulative yield, kg Estimate SE P-value 
De novo    
28-day  81.1 54.0 0.14 
305-day 1733.4 604.7 <0.01 
Preformed    
28-day -4.0 51.8 0.94 
305-day 59.2 613.3 0.92 

 

The proportion of de novo and preformed fatty acid groups exhibited considerable 
variation amongst cows both within week of lactation but also across lactation (Figure 1). 
Proportion of de novo fatty acids reached a maximum mean (SD) of 27.2% (1.8%) 
at 14 weeks of lactation and had a minimum mean of 23.8% (3.0%) at 2 weeks of 
lactation. Proportion of preformed fatty acids had the opposite relationship, wherein the 
minimum mean was reached at 16 weeks of lactation (31.5 ± 3.5%) and the maximum 
mean was achieved at 4 weeks of lactation (38.4 ± 5.2%). Individual cow variation in 
fatty acids across lactation was high. Variance in individual cow de novo proportion 
ranged from -0.66 to 0.85 and from -0.24 to 1.43 for preformed fatty acids. Individual 
cow lactational variance in de novo fatty acids were positively associated with 305-
day cumulative milk yields (P < 0.01; Table 4). However, individual cow lactational 
variance in preformed fatty acids was not associated with either 28-day or 305-day 
cumulative milk yields (P > 0.1).

Milk fatty acids groups, de novo and preformed, are strongly associated with milk 
production outcomes at different stages of lactation. This suggests that these milk fatty 

Conclusions
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acids may be a useful management tool to aid in making pen grouping decisions, cow 
selection and breeding decisions, and informing dietary adjustments. Changes in the 
direction of the association between milk fatty acids and milk components at different 
lactation stages, as well as interactions with parity, underscores the importance of 
considering these factors when making management decisions based on a single 
milk test. A positive association of individual cow lactational variance in de novo 
fatty acids with 305-day cumulative milk yields is an interesting finding and warrants 
further investigation to understand the biology behind this association. Combined, the 
results herein indicate that routine milk testing across lactation may allow for tailored 
management decisions at the individual cow level using these fatty acid groups. 

Council on Dairy Cattle Breeding (CDCB). CDCB National Performance 
Metrics: Participation. Dairy Cattle U.S. Cows in DHI Herds (by state/territory) 
Participation in 2023 for all breeds in the U.S. https://webconnect.uscdcb.com/#/
national-performance-metrics. Accessed 28 Aug 2024.

Dorea, J. R. R., and L. E. Armentano, 2017. Effects of common dietary fatty 
acids on milk yield and concentrations of fat and fatty acids in dairy cattle. Animal 
Production Science. 57:2224-2236.

Figure 1. Box plots of de novo (top panel) and preformed (bottom panel) fatty acids of individual cows by 
week of lactation.

 

 
Figure 1. Box plots of de novo (top panel) and preformed (bottom panel) fatty acids of 
individual cows by week of lactation. 
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Identifying energy-deficient cows is difficult on farm. To calculate their energy balance, 
it is necessary to know the feed intake of each cow and their energy requirements. An 
alternative way would use biomarkers of energy deficiency, that are more accessible on 
farm. Candidate biomarkers have previously been identified as metabolites, proteins, 
and microRNAs. Among them, glutamate proved to be an interesting biomarker. The 
present project aimed to predict the concentration of glutamate in milk based on the 
mid-infrared (MIR) spectra. 577 MIR spectra were available with known glutamate 
concentration. Of these, 514 data were from a 6-day feed restriction trial conducted 
on 18 mid-lactating cows. The feed allowance was restricted to 50% of the energy 
requirements estimated during the previous ad libitum week. The 63 remaining data 
were from 26 cows that calved next autumn. For these cows, the feed restriction was 
based on a dilution of the diet with straw during mid-lactation the following spring. Two 
datasets were then created: a calibration and a validation dataset. The calibration 
dataset included 70% of the data (mean glutamate concentration = 338.7  µM/L; 
standard deviation (SD) = 177.3 µM/L) and was used to develop the equation using 
spare partial least squares regression. 

The validation dataset included 30% of the data (mean glutamate concentration 
= 346.0 µM/L; SD = 138.9 µM/L) and was used to apply the equation to calculate its 
accuracy [coefficient of determination (R²) and residual standard deviation (Sy,x)]. Milk 
glutamate concentrations were predicted with a calibration R² = 0.78 (Sy,x = 82.7 µM/L) 
and a validation R² = 0.65 (Sy,x = 82.5 µM/L). This equation is original. Its inclusion 
in panel of biomarkers paves the way for its use in the detection of energy-deficient 
dairy cows.

Keywords: dairy cattle, feed restriction, milk metabolite, mid-infrared spectrometry. 
Presented at the ICAR Anual Conference 2024 in Bled at the Session 2: New tools to 
extend the horizon of milk mid-infrared spectrometry 
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Dairy cows are very sensitive to negative energy balance. A negative energy balance 
is the state reached by an animal when the energy provided by its diet is lower than 
its energy requirements. It can be physiological, such as in early lactation, when 
requirements are higher than the energy intake, or environmental, when a significant 
decrease in intake occurs, for example during a feed shortage. Energy deficiency has 
a negative impact on the profitability of the dairy farm, particularly when it is severe 
or long-lasting, leading to a drop in milk production, health disorders or reproductive 
problems. 

To prevent or correct energy deficit in dairy cows, we first need to detect it. Breeders 
detect it through body condition score decrease, but it is usually not sensitive enough 
for early detection and consequently for early intervention. Blood tests are accurate 
to diagnose consequences of energy deficit such as ketosis but are invasive. Milk 
analyses have the advantage of being easy to access but are not specific enough. 

In this context, the Biomarq’lait project aimed to identify new biomarkers of energy 
deficit. A review of the literature (Leduc et al., 2021a) has shown that energy deficit 
has an impact on hormonal regulation, mobilisation of body reserves, mammary 
gland activity and milk production and composition. Panels of biomarkers, including 
macro-components, proteins (Leduc et al., 2022), microRNAs (Leduc et al., 2023), and 
metabolites (Billa et al., 2020; Leduc et al., 2021b) have been proposed. 

Among milk metabolites, glutamate appears to be a good indicator for several reasons. 
A rapid decrease in its concentration during dietary restriction, followed by a return 
to baseline levels during ad libitum re-feeding, has been observed (Billa et al., 2020, 
Leduc et al., 2021b, Pires et al., 2022). In addition, the positive correlation between 
glutamate concentration and energy balance is very strong (coefficient of correlation 
= 0.61 according to Billa et al., 2020). The response range seems to depend on the 
intensity of the feed restriction and on the lactation stage. Finally, no difference of 
glutamate concentration was observed at the beginning of lactation compared to the 
mid-lactation with ad libitum feeding, suggesting that glutamate could be an indicator 
of dietary restriction following an ad libitum period (Leduc et al., 2021b). Therefore, the 
objective was to determine the potential of measuring milk glutamate concentrations 
to detect energy-deficient cows using mid infrared (MIR) spectra already obtained 
routinely.

 

To carry out this study, two feed restriction trials were set up. The glutamate 
concentration was measured in milk, and MIR spectra of milk were collected. A 
mathematical model was then developed to predict the glutamate concentration in 
milk from the MIR spectra.

The data used come from two trials set up at INRAE (Figure 1): a short and intense 
restriction protocol (SI) and a protocol set up in a project called DEFFILAIT.

SI protocol was led in 2016 at the Marcenat experimental farm (INRAE, Herbipôle), 
on 18 cows in mid-lactation. During pre- and post-restriction, the cows were fed an 
ad libitum ration consisting of maize silage (66% of diet DM), barley straw (8% of diet 
DM), maize grain (8% of diet DM), soybean meal (17% of diet DM) and minerals and 
vitamins (1% of diet DM). During the experimental period (W1 in Figure 1), feed intake 
was limited to 50% of cows estimated energy requirements during the previous 6 days 
(W-1 in Figure 1). Milk and blood sampling kinetics (one sample per day) were used to 

Introduction
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study responses to restriction and refeeding. The short duration of the feed restriction 
period meant that each cow could be considered as its own control (Billa et al., 2020).

DEFFILAIT protocol was carried out as part of a trial set up during the ANR DEFFILAIT 
programme at the INRAE experimental farm of the UMR PEGASE (IEPL), on around 
thirty Holstein cows chosen to be representative of the herd’s variability (Fischer et 
al., 2020). These cows calved in autumn 2017 and were fed ad libitum during the first 
few months of lactation with a constant total mixed ration based on maize silage (65% 
of diet DM), dehydrated alfalfa (18% of diet DM), soybean meal (18% of diet DM) and 
production concentrate (9% of diet DM). In mid-lactation, all cows underwent a change 
of diet in March 2018, moving from the control diet to a restricted diet after a week of 
dietary transition. For the current work, only the 2 weeks prior to feed restriction and 
the weeks 2 to 5 (week+1 being the transition week) of feed restriction were kept. The 
restricted ration was diluted in energy and protein with inclusion of straw (11.5% of 
diet DM) and aimed to reduce milk production by 20% while maintaining ad libitum 
DM intake. Milk and blood samples were taken at 22 ± 1 days of lactation (D21) from 
34 cows that calved in autumn 2017, then at D-7 before dietary change and D+7 after 
the end of the transition week (Leduc et al., 2020). 

Immediately after milk sampling, the samples were divided into two aliquots. The first 
was used to analyse milk glutamate concentrations using an enzymatic-fluorometric 
method (Larsen and Fernández, 2017). The second was used to perform the MIR 
spectrum in milk analysis labs (MyLab, Chateaugiron, France for DEFFILAIT trial; 
Agrolab’s, Aurillac, France for SI trial), which was then standardised (Grelet et al., 
2015). Finally, 577 spectra with an associated measurement of milk glutamate were 
used for this study (Table 1). Of these, 514 came from the SI trial and 63 from the 
DEFFILAIT trial. 

Figure 1. Presentation of the experimental protocols.

 
 
Figure 1. Presentation of the experimental protocols. 
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Two sets of data were randomly generated from all the 577 spectra. We used 70% of 
the data from each trial (45 data from DEFFILAIT and 361 data from SI) to constitute 
the calibration set (n = 406). The remaining 30% (n = 171) constituted the validation 
set. Figure 2 shows that glutamate levels in milk and the trial of origin of the data are 
homogeneous between the calibration and validation sets. 

An equation was developed by sparse partial least square regression on the data from 
the calibration set to predict the glutamate concentration in milk from MIR spectra. This 
equation was then applied to the validation set to calculate its performance, described 
by the coefficient of determination (R²), the residual standard deviation (Sy,x), and the 
ratio between the standard deviation of the calibration set and the residual standard 
deviation (RPD).

The predicted glutamate using the developed equation was compared with the 
measured values of glutamate obtained using the enzymatic-fluorometric method 
(Figure 3). 

Table 1. Presentation of the data used.Table 1. Presentation of the data used. 
 

Trial 
Number of 

data 
Number of cows 

Lactation 
number 

Days in milk 

Short and 
Intense 514 10 Montbéliarde 

+ 8 Holstein cows 2 to 7 114 to 215 days 

DEFFILAIT 63 26 Holstein cows 1 to 6 22 to 205 days 

 

Data processing

 

 
 
Figure 2. Glutamate levels in milk according to trials in the calibration and validation sets. 
 

Figure 2. Glutamate levels in milk according to trials in the calibration 
and validation sets.
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The performances of the milk glutamate prediction equation developed are showed in 
Table 2. The equation achieved a calibration coefficient of determination (R²) of 0.78 and 
a residual standard deviation (Sy,x) of 82.7 µM/L. On the validation set, R² reached 
0.65 with a Sy,x of 82.5 µM/L. There is no equivalent equation in the literature to compare 
with our results. However, this equation appears promising.

To detect cows with energy deficits, the energy status of the animals was projected 
in Figure 4, with a distinction being made between cows in early lactation, cows in 
mid-lactation with energy deficit and cows in mid-lactation with energy surplus. The 
low glutamate values (less than 200 µM/L) only concern cows in mid-lactation with an 
energy deficit, i.e., on feed restriction. Milk glutamate therefore appears to be specific 
to feed restriction. This finding opens interesting prospects for improving the prevention 
of energy deficit when advising livestock farmers. 

Figure 3. Scatter plot of measured (y-axis) versus predicted (x-axis) values for the glutamate 
concentration in milk using a partial least squares model built on all 577 milk samples. 
1 point = 1 individual milk sample. Circle = data from calibration set; triangle = data from 
validation set; solid lines = regression lines; dashed line = first bisector.
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Table 2. Performances of the milk glutamate prediction equation in the calibration set and validation set.Table 2. Performances of the milk glutamate prediction equation in the calibration set and validation set. 
 

Dataset 
Mean of 

measured 
glutamate 

SD of 
measured 
glutamate 

Mean of 
predicted 
glutamate 

SD of 
predicted 
glutamate 

SD of 
Residuals 

R² RPD 

Calibration set 338.7 177.6 340.6 152.2 82.7 0.78 2.15 
Validation set 346.0 138.9 348.2 123.4 82.5 0.65 1.68 
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To go further, it would be interesting to explore the possibility of predicting the variation 
in glutamate content to detect situations penalising cows at an early stage, or even the 
possibility of qualitatively identifying milks with low glutamate concentrations.

Glutamate concentration in milk seems to be an interesting indicator of energy deficit 
in dairy cows, when it is caused by feed restriction, and can be predicted using MIR 
spectrometry is possible. However, as the accuracy of the equation is not high enough 
for routine use, this indicator could be used in combination with other MIR-based 
indicators to provide more accurate information about the physiological state of the 
cows.

This work was carried out within the framework of the BIOMARQ’LAIT project funded 
by the French Ministry of Agriculture (CASDAR funds). The authors thank the staff of 
experimental units Herbipôle (https://doi.org/10.15454/1.5572318050509348E12) and 
IE PL (https://doi.org/10.15454/yk9q-pf68).

Figure 4. Scatter plot of measured (y-axis) versus predicted (x-axis) values for the glutamate 
concentration in milk using a partial least squares model built on all 577 milk samples. 1 point   1 
individual milk sample. Circle = Mid lactating cows in energy deficit; triangle = early lactating 
cows; cross = Mid lactation cows without any energy deficit.

 

 
 
Figure 4. Scatter plot of measured (y-axis) versus predicted (x-axis) values for the glutamate 
concentration in milk using a partial least squares model built on all 577 milk samples. 1 
point = 1 individual milk sample. Circle = Mid lactating cows in energy deficit;  
triangle = early lactating cows; cross = Mid lactation cows without any energy deficit. 
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Mid-infrared spectrometry (MIR) is a commonly used and cost-effective method for 
analyzing milk composition. By utilizing infrared light, MIR spectroscopy reveals 
specific absorption patterns in milk samples, providing detailed information on its 
chemical constituents. European Milk Recording (EMR) is a key provider of MIR 
services, offering standardization and predictions through collaboration with former 
OptiMIR Project - milk recording organizations (MROs). Researchers have shown the 
potential of MIR in predicting milk components like fatty acids and minerals, as well as 
biomarkers and complex traits such as ketosis and mastitis. By analyzing fatty acid 
patterns in milk spectra, MROs can estimate various traits related to animal health 
and productivity. Recent projects like eMissionCow and ReMissionDairy  optimized 
calibration equations, improved farm management practices and validated the MIR 
methane (CH4) equation developed in CRA-Wallonie. The data derived from these 
equations can help in making informed decisions on feeding practices and climate 
impact at different levels of animal production. Continuous updates and inclusion of 
reference data are essential for the advancement of this field in the global context. 
FeMIR is a new tool developed by LKV Baden-Württemberg for farmers and consultants 
to improve monitoring of animals’ metabolism. The FeMIR report, developed as part 
of the ReMissionDairy and eMissionCow projects, offers a comprehensive overview 
of the herd’s energy status throughout lactation phases. Over the past two years, 
the FeMIR report has been successfully tested in practice by four field workers and 
three consultants. A field test was conducted comparing new parameters such as 
energy, feed and nitrogen efficiency, and fatty acids (FA). DeNovo and Preform 
FA were compared with livestock on trial farms. Farm visits were made to different 
parts of Baden-Württemberg to establish guidelines for these new parameters. The 
report included MIR spectral data from monthly milk recordings, feed samples, and 
examinations of animals according to FeMIR. Thresholds and limits  for individual 
parameters were determined to define an optimal framework for farms. The physical 
condition of animals on site confirmed experts’ expectations derived from the report’s 
efficiency and energy parameters. Participants rated the FeMIR report as a valuable 
tool for feeding and metabolic control of animals.

Keywords: MIR, spectral data, dairy cows, FeMIR, feed efficiency, methabolic 
control, herd management. 
Presented at the ICAR Anual Conference 2024 in Bled at the Session 2: New tools 
to extend the horizon of milk mid-infrared spectrometry  

Abstract

mailto:ldale@lkvbw.de


126

FeMIR: MIR Spectral predictions for feed and energy

Proceedings ICAR Conference 2024, Bled

Climate change presents numerous challenges across all sectors of human activity 
today. The increasing frequency and duration of extreme weather events, such as 
droughts, along with the rise in global temperatures, pose a greater risk to farms in 
terms of water scarcity and animal well-being (Huber and Gulledge, 2011). This is 
particularly evident in livestock systems, which are impacted by the consequences of 
global warming (Kuczynski et al., 2011) and contribute significantly to greenhouse gas 
emissions, including carbon dioxide (CO2), methane (CH4), and nitrous oxide (N2O) 
(Lesschen et al., 2011). In this context, it is crucial to mitigate the impact of climate 
change on agriculture and animal production, as well as address the contribution of 
these sectors to the issue. This is essential in ensuring a sustainable food supply for 
a rapidly expanding global population (Bauer et al., 2016).

An essential aspect of achieving these objectives involves utilizing Mid Infrared (MIR) 
spectral data. Studies have demonstrated the capability of MIR in forecasting milk 
components such as fatty acids and minerals, along with biomarkers and intricate traits 
like ketosis and mastitis. Recent initiatives like eMissionCow and ReMissionDairy have 
been enhancing calibration equations, refining farm management techniques, and 
validating the MIR methane (CH4) equation established at The Walloon Agricultural 
Research Center (CRA-Wallonie) (Dale et al., 2023). The information obtained from 
these equations can assist in making well-informed decisions regarding feeding 
practices and the environmental impact at various stages of animal production. Regular 
updates and the incorporation of reference data are crucial for the progress of this 
field on a global scale. Feed and energy efficiency Mid Infrared (FeMIR) is a novel tool 
created by the Regional Association for Performance and Quality Inspection in Animal 
Breeding of Baden Württemberg (LKV BW) to enhance the monitoring of animals’ 
metabolism for farmers and consultants.

The FeMIR report provides a thorough assessment of the herd’s energy levels 
throughout various lactation stages. Field workers and consultants have successfully 
trialed the FeMIR report over the last two years. The report incorporates Mid 
Infrared (MIR) spectral data from monthly milk recordings, feed samples, and animal 
assessments based on FeMIR criteria. Threshold values for specific parameters were 
established to establish an ideal framework for farms. The actual state of the animals 
on the premises validated the experts’ predictions based on the report’s effectiveness 
and energy metrics. Participants deemed the FeMIR report as a valuable resource for 
managing the feeding and metabolism of dairy cows. Consequently, ongoing efforts 
will assist farmers in the Upper Rhine region and beyond in enhancing feed efficiency, 
lowering greenhouse gas emissions, and mitigating their contribution to climate change.

In recent years, LKV BW has been involved in various international and national projects 
focused on calibrating different MIR models. One such project was eMissionCow, 
which aimed to enhance feed intake, feed efficiency, and reduce CH4 emissions in 
German cattle populations. Accurate individual animal data from experimental farms 
played a crucial role in developing the models integrated into the LKV BW FeMIR tool. 
Approximately 900 cows with standardized MIR spectral data provided information 
on energy balance (EB), the EB were calculated in accordance with GfE (2001), 
feed efficiency (FE) calculated as kg ECM/kg dry matter, and energy efficiency (EE) 
calculated as kg ECM/MJ NEL (Lidineck, et al., 2021) for key German breeds like 
Holstein, Simmental (Fleckvieh), and Brown Swiss (Braunvieh) across 13 German 
teaching and experimental farms (Dale et al., 2019). Additionally, with the help of the 
eMissionCow project 20 Simmental cows were studied in climate chambers to enhance 
the robustness of the CRA-Wallonie model for CH4 emissions.
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Another MIR project involving LKV BW was ReMissionDairy, which aimed to leverage 
modern technologies to develop practical tools for feed management that assist dairy 
farmers in optimizing production efficiency and reducing their farm’s emission impact. 
Both ReMissionDairy and eMissionCow were complementary initiatives focused 
on decreasing CH4 emissions and enhancing feed efficiency. ReMissionDairy was 
focussed on the individual herd management, while the eMissionCow was focussed 
on the individual animal.

How does MIR spectral analysis function? It is both straightforward and somewhat 
intricate. As illustrated in Figure 1, when infrared light is directed at a sample, only 
specific frequencies are absorbed, resulting in a characteristic spectrum for that 
substance. The intensity of absorption is influenced by the substance’s concentration in 
the sample. A significant development from the OptiMIR project is the capability of MIR 
spectrometers to not only analyse primary components but also fatty acids, minerals, 
lactoferrin, beta-hydroxybutyric acid (BHB), acetone, and citrates. Additionally, complex 
attributes can be identified. For instance, models for ketosis, energy balances, and 
CH4 emissions were established as part of various projects.

The data utilized for modeling was prepared by TiDa (Tier und Daten GmbH) as part 
of the OptiKuh, OptiKuh2, and eMissionCow projects. This data now serves as the 
foundation for calculating the FeMIR parameters. Through collaboration with OptiMIR/
EMR, the Methagene group, and the European project GplusE at CRA-Wallonie, 
a methane equation incorporating SF6 and climate chamber measurements was 
developed. This equation was made accessible not only to EMR members but also 
to the German Association for Performance and Quality Testing (DLQ) through 
the eMissionCow project. Within this project, the methane model was expanded to 
include climate chamber measurements on Simmental cows. The inclusion of the 
southern breed Simmental and various feed rations enhanced the data variability and 
strengthened the equation’s reliability.

The data used for statistical analyses and machine learning consisted of spectral 
data from Bentley FTIR analysers, which had been standardized using the European 
Milk Recording (EMR) and CRA-Wallonie procedures (Grelet et al., 2014). The first 
derivative was computed from the absorbance values of the spectra, and 212 relevant 

Figure 1. Milk analysis using mid-infrared (MIR) spectra.
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wave numbers were selected. New parameters have been predicted with the help of 
the spectral models such as energy balance (EB-NEL), energy, feed, and nitrogen 
efficiency (EE, FE and NE - calculated as ratio of the amount of milk protein produced 
to the amount of crude protein consumed), and fatty acids (DeNovo and Preform FA). 
Different packages in the “R” statistical analysis software were employed to validate 
the models. Subsequently, the data was utilized to provide guidance to farmers at both 
herd and individual levels.

The LKV BW identified a growing necessity to enhance herd management concerning 
energy provision by incorporating additional MIR parameters. The FeMIR report 
emphasizes the energy balance within the herd, integrating various MIR parameters 
such as EB-NEL, energy efficiency, and feed efficiency from collaborations with DLQ, 
the OptiKUH Consortium, and LKV BW. Additionally predictions for fatty acids  from the 
OptiMIR/RobustMilk equation, methane emission per day from the MethaMIR equation 
developed by CRA-Wallonie, and nitrogen efficiency utilizing forage analysis and milk 
recording data were included (see Figure 2).

The report presents fatty acids as a percentage of total fat (100%) rather than in 
relation to their content in milk, as per Barbano et al. (2019). DeNovo fatty acids are 
directly linked to rumen functionality and were therefore chosen for visualization in the 
FeMIR tool. In addition to utilizing and interpreting the report, specific limits for each 
parameter were identified and established to define an optimal framework for farm 
management (see Table 1).

Understanding the factors at play, it is important to note that the breakdown of plant 
cell walls in the rumen primarily produces acetic acid and butyric acid. These acids 
travel to the udder through the bloodstream, where the mammary gland converts 
acetic acid into short and medium-chain fatty acids, indicating the conversion of feed 
protein into milk protein. Low values may suggest low feed intake, excessive crude 
fat content, poor digestibility of cell walls, or inadequate rumen fermentation. Preform 

Results and 
discussion

Figure 2. FeMIR - MIR parameters that indicate the energy condition of the entire herd..
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fatty acids provide insights into the conversion of fatty acids broken down from body 
tissues. Elevated values indicate a high breakdown of pre-formed (long-chain) fatty 
acids from body fat.

Table 1. Optimal ranges of values for herd management. 
 

Parameter Low Value High Value 
EB [MJ NEL] < -30 > 40 
FA Denovo [%] < 20  
FA Preform [%]  > 50 
FE [kg ECM/kg DM] < 1.2 > 1.8 
EI [MJ NEL] < 80 > 180 
DMI [kg DM] < 5 > 25 
EE [kg ECM/MJ NEL] < 0.12 > 0.36 
NE [%] < 30  
CH4/ECM [g/day/kg] < 10  

 
  

Figure 3. FeMIR - MIR parameters that reflect the energy status of the cow or herd.
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As part of the ReMissionDairy project, the FeMIR tool was developed for use by farmers 
and consultants. The FeMIR report shows cases with milk MIR parameters that indicate 
the energy status of either the individual cow or the entire herd. The variation of the 
values are larger on individual cow level, than on herd level. 

The DeNovo and Preform fatty acids are presented alongside results from milk recording 
data, including energy corrected milk (ECM), fat (F%), protein (E%), lactose (L%), 
urea (H), NEL energy balance, feed efficiency, energy efficiency, as well as CH4 and 
CH4 per kg ECM. Energy-related MIR parameters are color-coded to highlight values 
outside the normal range. It is evident from the visualization that issues arise at the 
start of lactation, with negative EB-NEL values indicating a problem. 

During fieldwork within the ReMissionDairy project, the FeMIR report underwent testing 
to establish the limits for each parameter and determine an optimal framework for herd 
management. Consultants and techniciens of the LKV were involved in evaluating the 
output on test animal and -herd level. 

The physical condition of the animals observed on-site aligned with the experts’ 
expectations derived from the efficiency and energy parameters in the report. 

Feed efficiency, as shown in Figure 3, is the ratio of milk produced in kg ECM to 
feed consumtion in kg dry matter (DM). In individual animals, high efficiency can be 
falsely indicated by fat decomposition. To improve feed efficiency at the farm level, 
it is important to reduce maintenance requirements (such as cow weight relative to 
performance) and avoid overconsumption. This information applies to all components 
mentioned in the introduction. The next most important component after feed efficiency 
is energy balance (EB), which can be visually observed when animals have lower 
EB values during mid-lactation. DeNovo fatty acids provide insight into newly formed 
fatty acids in the udder and rumen functionality, with lower values indicating low feed 
intake and cell wall digestibility. Preform fatty acids indicate high digestibility degradation 
with high values. The final component in the FeMIR report is methane (CH4) emissions 
and CH4 per kg ECM, which can help monitor emissions and implement measures 
to reduce methane production. All participants rated the FeMIR report as a valuable 
and effective tool for managing feeding practices and monitoring animal metabolism. 
But differences between the informative value of the parameters have been found: 
according to the consultants of the LKV the feed efficiency value should not be used 
as “stand alone” parameter due to higher variation, but can be used combined with 
the energy balance. The energy balance in contrary is a meaningful value regarding 
to feed management, as is methan emission (CH4). The parameters are particularly 
expressive on herd level, while critically seen on animal level. The farmers themselves 
however benefit most of the output CH4. The LKV herd manager was created as part 
of the Cattle Network cooperation (RDV) and is planned to be utilized by all RDV 
partners. FeMIR has the potential to be used for all RDV cows in the future, totalling 
approximately 2.3 million cows. Additionally, the pilot farms’ initial data and research 
data for each MIR parameter are also accessible.

The FEMIR report tested on-site showed, that the physical condition of the animals 
observed confirmed the experts’ expectations derived from the efficiency and energy 
parameters in the report. A distinction is made between the usefulness and informative 
value of the individual parameters. While the feed efficiency can only be used together 
with the values of the energy balance, the latter is informative enough on its own. On 
animal level, the report has still to be improved. But all participants agree, that the 
FeMIR report is a valuable and effective tool for managing feed and monitoring animal 
metabolism on herd level. Further research is needed on animal level and to investigate 
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the impact of heat stress on efficiency indicators to assess how climate change and 
heat stress affect cows feeding systems.
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An ability to predict the likelihood of conception of dairy cows in early lactation would 
help farmers make informed breeding decisions. Cows predicted to be most fertile, 
for instance, could be inseminated with sexed or high premium semen while those 
predicted to be least fertile could be mated with beef semen. Previously, we developed 
such a model using data from commercial milk testing, which included milk yield, milk 
composition (fat, protein, and lactose percentages), somatic cell count, calving age, 
days in milk, days from calving to first insemination, and milk mid-infrared (MIR) spectra 
generated from a Bentley instrument. The model shows a good prediction accuracy 
and has been implemented by Australian herd-test centres who provide reports to 
farmers. This study extended the analysis to FOSS instrument, which is the other major 
instrument used for MIR in Australia. Firstly, we tested if the previously developed 
Bentley model would be applied directly to spectral data obtained from a FOSS machine. 
Secondly, a new model trained specifically using FOSS MIR data was developed and 
evaluated. Finally, various genomic and phenotypic measures were compared for cows 
predicted to have most and least likelihood of conception compared to herd average. 
A total of 9,120 records of milk MIR spectra, milk yield, milk composition, somatic cell 
count, calving age, days in milk and days from calving to first insemination of 3,518 cows 
from 31 dairy herds were used. The new model was developed in the same way as 
the Bentley model which included initial training on “extreme data” and then validating 
against field data. Specifically, the “extreme data” only include cows that conceived to 
first insemination (“good”) and cows with no conception event recorded and had only 
one insemination (“poor”), whereas field data include all cows in the herd. The model 
performance was evaluated by first ranking the cows within a herd for their predicted 
likelihood of conception and then selecting the top and bottom 10% of records and 
compared to actual values. The accuracy was measured as the proportion of selected 
records being correct. When applying the Bentley model to FOSS data, the prediction 
accuracies of identifying the top and bottom 10% of cows were around 0.37 and 0.62, 
respectively. Such a poor prediction accuracy using the Bentley model implies the 
need to develop a separate model for FOSS. The new model was able to achieve 
an accuracy of around 0.53 and 0.77 when used to identify the top and bottom 10%, 
respectively, which is comparable to the published Bentley model. It could also correctly 
identify the top 10% of cows conceiving following two inseminations with an accuracy 
of 0.70. Compared to herd average, the top 10% of cows ranked by the model were 
significantly younger and had lower somatic cell cows while the opposite pattern was 
observed for cows in the bottom 10%. Interestingly, there was no significant differences 
in 305-day milk yield, milk composition, days from calving to first insemination, days in 
milk, and other breeding values and national selection indices. In conclusion, a model 
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for predicting the likelihood of conception to first insemination of Australian dairy cows 
using milk MIR spectra and other on-farm data has been developed and validated for 
further implementation for farmers who use FOSS instrument.

Keywords: Likelihood of conception, mid-infrared spectroscopy, cows. 
Presented at the ICAR Anual Conference 2024 in Bled at the Session 2: New tools to 
extend the horizon of milk mid-infrared spectrometry

Along with genomic selection , numerous management tools have been developed 
to help farmers optimized their breeding decisions (Giordano et al., 2022). One 
important category of such models is those that aim to predict the potential outcome 
of insemination (Shahinfar et al., 2014, Hempstalk et al., 2015, Blavy et al., 2018, 
Ho and Pryce, 2020). The information used to develop these models vary from 
easy to obtain on‑farm (e.g. milk production, milk composition, and milk mid-infrared 
(MIR) spectroscopy), to moderately easy to measure (e.g., milk progesterone) or 
comparatively difficult to measure (e.g., body weight and body condition score). In 
Australia, milk recording is routinely practiced by nearly half of Australian farmers with 
resulting data being utilized to support a range of management decisions such as culling 
or ending a cow’s lactation (Newton et al., 2020). As such, the prediction models that 
make use of data from the current milk-testing program offer most advantage as this 
information is readily available on-farm. In 2019, Ho et al. (2019) developed a model 
for predicting the likelihood of a cow to get pregnant at first insemination with a good 
prediction accuracy (~0.76). 

A potential application of this model is to rank cows within-herd for their probability of 
conception to subsequently prioritize them for insemination with different types of semen 
(sexed, beef or conventional semen). Newton et al. (2024) showed that MIR‑fertility 
outperformed calving date when being applied to optimize semen allocation. 

The model has been implemented by Australian herd-test centres who provide reports 
to farmers (DataGene, 2022). However, the current model is only available to farmers 
that have their milk tested with herd-test centres operating Bentley instrument, which 
means the other half of farmers who use FOSS instrument is missing (Peter Thurn, 
personal communication).

The major objective of this study was therefore to extend the analysis to FOSS 
instrument. First, the transferability of the current model trained using spectra generated 
by Bentley instruments was validated against data collected from FOSS brand. Then, 
a new model using FOSS MIR data was developed and evaluated. We also examined 
the differences in various genomic and phenotypic attributes between cows predicted 
to be most and least fertile compared to the herd average.

All the data used for this study were obtained from DataGene (https://www.datagene.
com.au/). Because the aim of this model is to predict how likely a cow is going to 
conceive to first insemination (i.e. a future event), only milk-testing records collected 
before the first insemination were retained. Accordingly, there were 9,120 records of 
insemination, calving date, days in milk (DIM) at herd-test, days from calving to first 
insemination (DAI), age at calving, herd-test day milk yield (MY), fat, protein, and 
lactose percentages, somatic cell count (SCC), and MIR spectra, from 3,518 cows of 
31 commercial herds. The data were collected in the years of 2021 (n = 1,032) and 
2022 (n = 7,989). Other information was also available on these cows, including 305‑d 
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milk yield, Banlance Performance Index (BPI), Health Weighted Index (HWI), and 
breeding values of milk, fat, protein, SCC and daughter fertility.

The cows were milked twice daily with milk samples (either a.m. or p.m.) being sent 
to the National Herd Development Co-Op Ltd (Cohuna, Victoria, Australia) and Dairy 
Express (Armidale, New South Wales, Australia) to be analyzed for fat, protein, 
and lactose concentrations and SCC using the MilkoScan FT+ spectrometer (Foss, 
Hillerød, Denmark). The corresponding spectra from the milk composition analysis 
were obtained for this study. 

The pregnancy was confirmed by a calving event in the subsequent lactation and was 
coded binarily as 1 (pregnant) or 0 (open). In addition, the inseminations that resulted 
in abortions were removed. Prior to modelling, several mathematical treatments were 
applied to the raw spectra. First, the spectral regions previously specified to be noisy 
or non-informative (regions between 1,710 and 1,600 cm−1, between 3,690 and 
2,990 cm−1, and >3,822 cm−1) caused by a high-water absorption were eliminated, 
which led to 531 wavenumbers remained. Thereafter, a global Mahalanobis distance 
(GH) between each spectrum and the population average was calculated as an 
indicator of potential outliers. The spectra with GH > 3 were assumed to be outliers 
and excluded (n = 50). Lastly, first-order Saviztky–Golay derivative was applied to the 
reduced spectra. The final dataset included 9,070 records from 3,498 cows of 31 herds 
to be used for future analyses.

In the first scenario, we tested the transferability of the current Bentley model on the 
spectra generated from a FOSS instrument This was done by first matching each 
FOSS MIR wavenumber to the closest one generated from a Bentley machine. Then, 
the current Bentley model was applied directly to these spectra and other predictors 
including milk yield, milk composition, DIM, calving age, DAI, and SCC to derive 
predictions.

The second scenario included training and evaluating a new model specific to FOSS 
instrument, using the methodology described in Ho and Pryce (2020). Briefly, the 
model was first trained using only data from cows that conceived to first insemination 
(coded as 1) and cows with no conception event recorded and with only 1 insemination 
(coded as 0). A fresh dataset with all cow’s data regardless of the conception statuses 
was used to test the ability of this newly developed model for identifying cows that 
conceived or did not conceive to first insemination. To do this, we first extracted the 
probability of conception from the model and used this to rank cows within each herd 
from highest to lowest (i.e. most and least fertile). Next, varying proportions of records 
from 5 to 40% were selected and validated against the actual observations.

In both scenarios, the model performance was evaluated as the proportion of selected 
records to be truly predicted. For example, if the purpose is to predict 10% of least fertile 
cows (i.e. potentially fail to get pregnant to first insemination) from a herd of 1000 cows, 
100 of these will be selected from the bottom of the predicted list and compared with 
the actual values. The performance in this case will be calculated as the proportion of 
cows being non-pregnant over 100. For the scope of this study, we only reports the 
prediction accuracy obtained from the external herd-by-herd validation, which has been 
concluded to provide realistic performance compared to random cross-validation (Wang 
and Bovenhuis, 2019). In this validation approach, for each round, data of a given herd 
was excluded to be subsequently used as a validation set against the model trained 
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using the data of the remaining herds (i.e. 30 herds), and this process was continued 
until all herds have been validated once.

Finally, to further understand the model’s behaviour, we extracted and compared 
various genomic and phenotypic characteristics of cows ranked as top and bottom 10% 
in comparison to the herd average. The comparisons were done using 1-way ANOVA 
tests with pairwise comparisons. All analyses in this study were performed using R 
statistical software version 3.6.1 (R Development Core Team, 2020). 

When applying the Bentley model directly to the FOSS data, regardless of the 
proportions selected, the prediction accuracies for all three categories (conceived to 
first insemination, conceived following two inseminations, and open to first insemination) 
were around 0.37, 0.49, and 0.62, respectively (Tabe 1). The corresponding figures 
of model performance reported by Ho and Pryce (2020) were 0.48, 0.76 and 0.69. 
The poor performance obtained in the current study implies the need to develop a 
separate model for farmers that milk-test their herds with herd-test centres operating 
FOSS instrument. 

On the new model, good performance was obtained and the results were comparable 
with that of Bentley model (Ho and Pryce, 2020). The prediction accuracies of the 
model to rank and identify cows that conceived to first and second insemination, and 
cows not conceived to first insemination ranged between 0.49–0.54, 0.66–0.72, and 
0.75–0.81, respectively. Also, the higher the selected proportions, the lower the model 
performance. However, the prediction accuracies of this FOSS model were considerably 
variable (the standard deviation of around 0.20) indicating that more data is needed to 
improve the robustness of the model, as also concluded by Pralle and White (2020).

To further understand the model’s behaviour, we examined various phenotypic and 
genomic features of cows that were predicted to be high and low fertility compared 
to the herd average. This is an important step as it gives farmers confidence in using 
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Table 1. Accuracy of models (mean ± standard deviation) for identifying cows with good 
likelihood of conception to first and second insemination and cows with poor likelihood 
of conception to first insemination. 
 

Proportions 

Cows with good 
likelihood of 

conception at first 
insemination 

Cows with good 
likelihood of 

conception at 
second insemination 

Cows with poor 
likelihood of 

conception at first 
insemination 

Scenario 1: Bentley model applied to FOSS data 
5 0.31 ± 0.34 0.39 ± 0.36 0.59 ± 0.29 

10 0.31 ± 0.32 0.40 ± 0.35 0.58 ± 0.26 
15 0.32 ± 0.32 0.41 ± 0.35 0.56 ± 0.24 
20 0.32 ± 0.32 0.41 ± 0.35 0.55 ± 0.24 
25 0.32 ± 0.32 0.41 ± 0.35 0.54 ± 0.24 
30 0.32 ± 0.32 0.41 ± 0.35 0.54 ± 0.23 

Scenario 2: new FOSS model 
5 0.54 ± 0.25 0.72 ± 0.21 0.81 ± 0.27 

10 0.52 ± 0.20 0.68 ± 0.18 0.77 ± 0.26 
15 0.49 ± 0.21 0.68 ± 0.16 0.76 ± 0.23 
20 0.49 ± 0.20 0.67 ± 0.17 0.76 ± 0.20 
25 0.48 ± 0.19 0.66 ± 0.16 0.76 ± 0.22 
30 0.49 ± 0.13 0.66 ± 0.14 0.75 ± 0.23 

 
  

Table 1. Accuracy of models (mean ± standard deviation) for identifying cows with good 
likelihood of conception to first and second insemination and cows with poor likelihood 
of conception to first insemination.
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the model to make breeding and management decisions. For example, in conjunction 
with BPI or daughter fertility, the cows predicted to have high likelihood of conception 
could be inseminated with sexed or premium semen. In this context, it is essential to 
make sure that the fertile cows are not the low milk producers. Because the results 
are similar when other proportions of cows being selected, we only present here the 
statistics for the top and bottom 10% of cows selected to compare with that of herd 
average. In general, the results were similar to our previous analysis on the Bentley 
model (Bird et al., 2023). Compared to the herd average, cows predicted to be most 
fertile by the model were significantly younger and had a lower somatic cell count while 
the opposite patterns were observed for cows that were predicted to be least fertile. 
These results might partially explain for the higher conception rate to first insemination 
of the top-ranking cows compared to herd average and bottom-ranking individuals 
(0.47, 0.40, and 0.23, respectively). Numerous previous publications have reported 
the negative association between the cow’s age as well as SCC and their health and 
reproductive performance (Lomander et al., 2013, Golder et al., 2021). Interestingly, 
while 24-hrs milk yield was significantly between the three groups, MY305 were not, 
which would be explained by the difference in DIM, i.e. predicted fertile cows were 
milked earlier while the infertile cows were milked later than all cows within the herd 
(47.2, 66.7 versus 55.6, respectively). In addition, predicted high fertility cows had a 
decreased calving to first insemination interval compared to the herd average and 
low fertility cows (Table 2). This is highly desirable especially in the pasture-based 
and seasonal calving system, for example, in Australia, because this allows farmers 
to match the cow’s high energy requirements in early lactation to the peak pasture 
growth rate (Shalloo et al., 2014). 

While there were no statistically significant differences between the three groups 
regarding the genomic features, it is interesting to note that the cows predicted to be 
most fertile had higher BPI and daughter fertility breeding values. These results are 
consistent with the previous analysis of Bird et al. (2023).

 
Table 2. Mean and standard deviation of genomic and phenotypic traits for predicted 
high fertility subgroup, herd-average, and predicted low fertility subgroups*. 
 

 Top 10% Herd average Bottom 10% 
MY305 (kg) 6,548 ± 1,270 6,880 ± 1,355 7,107 ± 1,427 
Fat percent 3.95 ± 0.51 4.00 ± 0.43 4.05 ± 0.53 
Protein percent 3.27 ± 0.28 3.22 ± 0.26 3.20 ± 0.36 
SCC 63.7 ± 49.3a 164.5 ± 103.3b 676.4 ± 716.5c 
MY24 (kg) 24.0 ± 4.2a 27.2 ± 4.5b 27.5 ± 6.1b 
DIM 47.2 ± 26.6a 55.6 ± 21.6b 66.7 ± 28.4b 
Calving age (month) 32.3 ± 8.9a 49.9 ± 10.1b 77.1 ± 20.3c 
Calving to first AI 95.5 ± 22.8a 108.9 ± 29.3ab 124.7 ± 39.5b 
Conception to first AI 0.47 ± 0.19a 0.40 ± 0.16a 0.23 ± 0.22b 
BPI 157 ± 100 152 ± 66 136 ± 69 
HWI 161 ± 99 154 ± 64 133 ± 55 
ABVmilk 58.2 ± 161 73.1 ± 64 74 ± 242 
ABVfat 11.1 ± 12.1 12.1 ± 7.5 12.3 ± 9.3 
ABVprotein 7.2 ± 5.6 7.2 ± 5.1 6.9 ± 7.3 
ABVscc 129.8 ± 19.4 126.7 ± 12.1 122.2 ± 10.1 
ABVdaughter_fertility 104.1 ± 3.3 103.6 ± 2.5 102.8 ± 2.5 

*The results are similar for other selected proportions (i.e. 5%, 15%, 20%, 25%, and 30%), only those 
that obtained when 10% of records were selected being presented here.  
MY305 = 305d milk yield (kg), SCC = somatic cell count, MY24 = 24 hours milk yield on the herd-test 
day (kg), DIM = days in milk at herd-test, BPI = Balance Performance Index, HWI = Health Weighted 
Index. 
 

Table 2. Mean and standard deviation of genomic and phenotypic traits for predicted 
high fertility subgroup, herd-average, and predicted low fertility subgroups*.
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This study shows that the MIR-fertility prediction model developed using data from a 
Bentley instrument could not be transferred directly to the spectra generated from a 
FOSS instrument. Further, we have successfully developed a new model specific to 
FOSS instrument with good prediction accuracy. However, more data is needed to 
improve the robustness of the model.
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Milk mid-infrared (MIR) spectrometry has been utilized worldwide and for decades to 
analyze the components of milk. In a routine use, the method demonstrates a very 
high precision and repeatability, particularly for the main milk components. This is 
substantially supported by repeated analyses of standard milk samples with known 
reference values, whereof a slope-intercept (S/I) correction is derived for regular 
samples. However, this does not apply to routinely collected spectral data, where 
deviations and drift can be observed both between different instruments and within an 
instrument over time. The aim of this study was to demonstrate a new approach for 
standardization of MIR spectra using a framework of regression models considering 
results of laboratory analyses and information on the animal, such as days in milk 
(DIM) or parity, to estimate daily and instrument-wise standardization coefficients for 
the individual wavelengths.

The data were provided by the Landeskontrollverband Niedersachsen (LKV 
Niedersachsen, Leer, Germany) and included spectral data from 5 spectrometers 
(FOSS, Hillerød, Denmark) as well as the corresponding data from the dairy herd 
improvement (DHI) testing, which were routinely collected in the first half of 2022 
(dataset I, DS-I). In addition to the total of 2.3 M spectra from routine DHI testing, triple 
analyses of the same 5.3 k DHI milk samples on 3 of the 5 spectrometers were carried 
out on samples of 7 different farms during the same period (DS-II). Furthermore, 61.0 k 
spectra of standard milk samples were available (DS-III). In the daily laboratory routine, 
these samples of the weekly changing North German Standard Milk (NGSM) were 
analyzed 3 times in a row every 200 regular samples (reference analysis by LUFA 
Nord-West, Oldenburg, Germany).

In a first step, the DHI spectra of DS-I were used to quantify and eliminate day‑specific 
instrument effects in a complex framework of regression models, considering 
information on the animal as well as data obtained from the lab analyses to finally 
estimate instrument-, day- and wavelength-wise standardization coefficients. With the 
aim of demonstrating the effect of standardization, the dataset with triple analyses 
(DS-II) was utilized in a second step to develop calibration models for both raw and the 
standardized spectra using the S/I-corrected fat values obtained from the laboratory. 
Based on this, two separate analyses were performed: first, the dataset with the triply 
analyzed DHI samples (DS-II) was used for principal component analyses (PCA) and 
a comparison of the estimability of fat in each case for raw and standardized spectra. 
Second, the dataset with the analyses of standard milk samples (DS-III) was used to 
compare the S/I-corrected laboratory fat values with estimates from the developed 
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fat models based on both raw and standardized spectra across all 5 instruments and 
over time. 

It could be shown that the standardization led to a harmonization of the spectra between 
instruments as well as over time and thus corrected both general and temporary 
instrument effects. In addition, the estimability of milk fat, which was used as an 
example trait for the validation of the methodology, was optimized by the standardization 
of the MIR spectra. Results showed that the root mean squared error (RMSE) in a 
leave‑one‑instrument-out cross-validation (LOIO-CV) could be reduced from 0.110 to 
0.032% fat during calibration and from 0.045 to 0.020% fat during validation. Regarding 
the standard milk analyses, the RMSE was also reduced from 0.038 to 0.019% fat 
and thus closely approximates the RMSE of 0.014% fat of the S/I-corrected laboratory 
values. This study showed that there is not only a high demand for standardization 
across instruments, but also within instruments over time. Therefore, vit-standardization 
as a statistical procedure featuring a daily standardization seems to be a promising novel 
approach for future estimation of traits that are not covered by standard milk samples.

Keywords: standardization, milk mid-infrared spectrometry, regression model framework. 
Presented at the ICAR Anual Conference 2024 in Bled at the Session 2: New tools to 
extend the horizon of milk mid-infrared spectrometry  

For decades, Fourier transform MIR spectrometry of milk has been used globally to 
determine milk components. Its accuracy for payment-relevant main milk components is 
essentially attributable to the check sample tests carried out regularly in the laboratory 
routine (Gengler et al., 2016; Nieuwoudt et al., 2021). By comparing target and actual 
values of standard milk samples with known composition, these tests are used to 
derive a S/I-correction for regular milk samples. The requirement for S/I corrections is 
well known, as recorded spectra the same sample are neither comparable between 
instruments nor over time (Young, 1978; Wang et al., 1991). In addition to fundamental 
differences between various manufacturers, there can be differences even within 
the same manufacturer between different instruments of the same model generation 
(Grelet et al., 2015; Nieuwoudt et al., 2021). Apart from this, environmental effects such 
as temperature and humidity, mechanical wear, sample handling and constructional 
differences of the instruments as well as mechanical and electronic effects, can result 
in spectral deviations or drift over time (Wang et al., 1991; Nieuwoudt et al., 2021). 

General and temporary instrument effects are a particular hindering when estimating 
traits beyond those known from the standard milk samples, as no simple S/I correction is 
possible. To handle this, there are various approaches that focus on the standardization 
of MIR spectra. In theory, this shall allow the transfer of models between different 
instruments to obtain reliable estimates over time. The manufacturer FOSS, for 
example, has been using its own patented process for instrumental standardization, 
which should be carried out regularly, e.g. monthly, by analyzing a chemical liquid, 
the so-called ‘equalizer’, for which a reference spectrum is known (FOSS, 2014). 
In general, piecewise direct standardization (PDS) can be considered the gold 
standard of non-instrumental standardization methods (Wang et al., 1991). In this 
process, spectra from secondary instruments (“slaves”) are translated into spectra 
from primary instruments (“masters”) with the aid of statistical models. However, PDS 
requires the analysis of common milk samples. An example of the use of PDS is the 
standardization service offered by European Milk Recording (EMR, 2024, Ciney, 
Belgium), which is based on the procedure described by Grelet et al. (2015, 2017). In 
the EMR service, common standardization samples are analyzed in repetition on all 
instruments approximately every month. Based on the corresponding recorded spectra, 
standardization coefficients are derived in a centralized procedure, that can be applied 
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on regular milk samples. An alternative standardization method that does not require 
analysis of common samples is the procedure described by Bonfatti et al. (2017). In 
this so-called retroactive standardization of spectra, temporary homogeneous subsets 
are identified first. Using a PCA-based method, transformations are then determined 
which translate the various subsets in the form of “slave” datasets into a “master” by 
means of an S/I-based correction of the absorbance values. 

It is important to emphasize that particularly short-term instrument effects can occur 
during spectrometric measurements. In this regard, Nieuwoudt et al. (2021) showed 
in their method for weekly monitoring of spectral data that there is a great need for 
continuous monitoring, as conspicuous drifts or deviations can already be detected 
between weekdays.

The objective of this study was to demonstrate a novel approach for the daily 
standardization of milk MIR spectra, in which general and temporal instrument effects 
are estimated and eliminated using a regression model framework to determine 
instrument-, day- and wavenumber-specific standardization coefficients.

All the data was provided by the LKV Niedersachsen (Leer, Germany) and can be 
differentiated in 3 sub-datasets. The first dataset (DS-I) included data of 2.3 M samples 
from routine DHI testing in the period from 01/01/2022 to 31/06/2022. The related milk 
samples were preserved with Bronopol (Georg Hansen e.K., Wrestedt, Germany) and 
were taken according to the ICAR guidelines (ICAR, 2022). The laboratory of the LKV 
Niedersachsen in Leer was equipped with a total of 5 FOSS instruments, of which 
2 were MilcoScanTM 7 RM (A and B) and 3 were MilcoScanTM FT+ instruments 
(C, D, and E). Besides the MIR spectra, fat, protein, and lactose contents of the milk 
determined by the laboratory were available. These MIR spectra-based values were 
determined by the manufacturer’s equations but were adjusted in a further step as part 
of the laboratory routine using analyses of NGSM and a thereof derived S/I correction. 
Furthermore, animal identification and the affiliation to the farm, the date of calving 
and therefore the DIM, parity, the information about the milk testing scheme including 
milking time as well as the milk performance were provided. The second data (DS-II) 
set also contained DHI data, but the associated samples were analyzed sequentially 
on 3 different instruments (A, B, and C). The 5.3 k samples were taken from 7 different 
farms whose DHI tests covered the same period from 01/01/2022 to 31/06/2022. The 
third dataset (DS-III) consisted of 61.0 k records from routine check sample tests 
of the weekly changed NGSM as well as their laboratory reference measurements 
analyzed, which were analyzed 3 times in a row every 200 regular samples. The 
reference analysis for the main milk components of the NGSM samples, which were 
also preserved with Bronopol (Georg Hansen e.K.), was carried out at LUFA Nord-
West (Oldenburg, Germany). Depending on the dataset, plausibility checks and outlier 
removals were carried out at the spectral level with the global H-value (Soyeurt et al., 
2019), regarding the agreement of the S/I-corrected fat values in the triplicate analyses 
of the DHI samples or in terms of completeness of the control samples (3 analyses 
of NGSM per test).

The dataset DS-I was used to determine instrument-specific, daily, and wavenumber-
related standardization coefficients of the MIR spectra. To quantify and eliminate 
both general and temporal instrument effects from raw spectra, a regression model 
framework was developed to obtain the standardized spectra. In this context, 
wavenumber-wise regression models were used to differentiate the observed variance 
of MIR spectral absorbance values into fixed effects associated with the milk sample and 
random effects related to the respective instruments. For the milk sample-associated 
effects, S/I-corrected laboratory values and information on the sample origin, such as 
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DIM and parity of the cow, were considered. In a further step, the absorbance values 
corrected for instrument effects were regressed on the raw absorbance values by simple 
linear regression to obtain slope and intercept correction factors as standardization 
coefficients. This was done by day, instrument, and wavenumber and thus allowed a 
translation of raw spectra into the standardized spectra. 

Furthermore, fat models were developed using dataset DS-II for both raw and 
standardized spectra to evaluate the effect of spectral standardization. In each case, 
partial least squares (PLS) regression models were used, considering n = 6 latent 
variables. The 1st gap derivative according to Soyeurt et al. (2011) was used as spectral 
pretreatment. In addition, the spectral ranges were reduced to 516 of 1,060  WN 
according to the selection by Grelet et al. (2015). The dataset was split so that 80% 
of the data was used for calibration and 20% for validation. 

In the first part of analysis, the data of repeated analyzed DHI samples (DS-II) were 
used to investigate the effects of standardization. On spectral level, PCA was used 
similar as in the work of Grelet et al. (2017). Separate PCA were performed both for 
untreated spectra and for spectra pretreated with a 1st gap derivation. The scores of the 
standardized spectra were projected into the same vector space as that spanned by the 
raw spectra. For comparison, the results were graphically displayed with score plots. 
To evaluate the estimability of fat, common statistics such as the RMSE at calibration, 
LOIO-CV and validation were determined for both raw and standardized spectra-
based fat calibration models. For graphical investigation, the observed S/I‑corrected 
laboratory fat values were compared with the MIR-based estimates in scatter plots. In 
the second part of the analysis, the dataset DS-III of analyzed check samples (NGSM) 
was utilized. For visualization, aggregated mean values of the differences between fat 
reference values of the NGSM and the S/I-corrected laboratory fat values as well as 
the fat estimates based on raw and standardized spectra were calculated at the daily 
level and displayed individually for each instrument over time using line plots.

PCA was utilized to assess the impact of standardization on MIR spectra. Figures 1A 
and C display variations in the spectra data across different instruments, notably in 
the 1st and 2nd principal components (PC) for non-derived raw spectra and particularly 
in the 5th and 6th PC of gap-derived raw spectra. In contrast, standardized spectra 
(Figures 1B and 1D) exhibit greater alignment between instrument scores, indicating 
a successful harmonization through standardization. These results are therefore 
basically comparable with those of Grelet et al. (2017). Instrument similarities are 
notably higher between instruments A and B (both MilcoScanTM 7 RM, diamond 
cuvette) compared to instrument C (MilcoScanTM FT+, CaF2 cuvette), possibly due 
to the different material of the cuvette or other marginal constructional distinctions. 
An influence of the cuvette material, for example, was also described by Nieuwoudt 
et al. (2021). A closer look at the data revealed that the separate point clouds of the 
analyses with instrument B (see Figure 1C) were each carried out on the same days 
and thus reveal temporary instrument effects on the spectra. These were significantly 
minimized by standardization, as can be seen in Figure 1D. Thus, these results 
underline the effectiveness of standardization for harmonization of spectra between 
different instruments and over time.

The calibration and validation metrics determined during model development as well 
as the comparison of the generated estimates with the S/I-corrected laboratory fat 
values were used to evaluate the effect of standardization on the estimability of fat. In 
Figure 2, the S/I-corrected laboratory values are plotted against the estimates from the 
calibration models based on raw (Figure 2A) and standardized spectra (Figure 2B). 
In general, the values lie close to the identity in both cases, but the estimates based 
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on the raw spectra reveal larger scatter and deviations. As in the previous part of 
the analysis, instrument B in particular shows considerable outliers in the estimated 
values based on raw spectra, but not in the estimated values based on standardized 
spectra. Thus, the standardization shows a substantial contribution to the reduction 
of overall and temporary instrument effects for the MIR-based fat estimates, which is 
also reflected in a significant reduction of the RMSE values. The RMSE of LOIO-CV 
during calibration decreased from 0.110 to 0.032% fat and from 0.045 to 0.020% fat 
at validation. These results can thus be compared with those of Grelet et al. (2015), 
who also observed a notable reduction in the RMSE in pre- and post-standardization 
comparisons of fat.

Differences between reference values from the NGSM samples to S/I-corrected lab fat 
values as well as fat estimates based on raw and standardized spectra were aggregated 
per instrument into daily mean values and plotted over time in Figure 3. Minimal scatter 
can be observed for S/I-corrected lab fat values, while strong short-term instrument 
effects with temporal daily mean biases up to 0.2% fat occur in estimates based on raw 
spectra. The differences between the reference values and the fat estimates based on 
standardized spectra scatter only slightly larger around 0 than of the S/I-corrected fat 
values but much smaller than for the estimates based on non-standardized spectra. 
This is also confirmed by the calculated mean RMSE values. The standardization led 

Figure 1. Results of principal component analyses of the spectra of triple 
analyzed milk samples before (Figures 1A and 1C) and after (Figures 1B and 
1D) standardization (n = 4,471 per instrument) on 212 of 1060 wavenumbers. 
The instrument-wise points correspond to the means in the respective principal 
components, where the respective ellipses represent the 95% two-dimensional 
density contour. Dim = Dimension, MIR = mid-infrared. 
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Figure 2. Comparison of the slope-intercept corrected laboratory fat values of triple analyzed 
milk samples to the fat estimates based on raw (Figure 2A) and standardized (Figure 2B) spectra 
(n = 4,471 per instrument). MIR = mid-infrared, RMSEval, RMSELOIO-CV, and RMSEval = root 
mean squared error of calibration, leave-one-instrument-out cross-validation and validation, 
S/I = slope-intercept. 

 

 

Figure 3. Daily mean differences between reference values of the North German 
Standard Milk samples to the slope-intercept corrected laboratory fat values as well 
as the fat estimates based on raw and standardized mid-infrared spectra (n = 53.5 k). 
lab = Laboratory, MIR = mid-infrared, RMSE = root mean squared error.
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to a reduction from 0.038 to 0.019% fat and thus almost corresponds to the RMSE 
of 0.014% fat of S/I-corrected laboratory fat values. As the NGSM samples neither 
were used for standardization nor for model development, this part of the analysis 
served as external validation both for the models and for the standardization approach. 
The estimated standardization coefficients based on DHI samples thus also show a 
potential for application to bulk milk samples analyzed with the same instrument and 
on the same day.

MIR spectrometric measurements are often influenced by general and temporal effects. 
This is why there is a high need for regular standardization to reduce drifts in both 
spectra and estimations of traits, that are not covered by standard milks and therefore 
cannot be adjusted via S/I correction. The presented procedure for daily standardization 
based on a regression model framework showed the ability to harmonize MIR spectra 
both across instruments and over time. This was confirmed by an improved estimability 
of milk fat, that was used as an example trait to validate the methodology. The underlying 
standardization method therefore has great potential to generate reliable MIR-based 
predictions of further phenotypes in the future, both to promote the development of 
herd monitoring tools for feeding and animal health and to serve as a data source for 
genomic evaluations. 

The work presented here can be seen as the first part of a proof of concept for the 
“vit- standardization”. In the meantime, the procedure has been upgraded so that 
standardization can be carried out not only on a closed dataset but also with daily 
new incoming data. Furthermore, a first MIR-based tool for monitoring of ketosis on 
routine DHI data has been released for over 3000 farms of the LKV Niedersachsen.
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Heat stress negatively affects the well-being, productivity, and profitability of dairy cows 
and farms. Previous studies have primarily focused on indicators such as respiration 
rate, skin temperature, rectal temperature, and milk yield, with limited research on the 
impact of heat stress on milk composition. Initial findings from various locations like 
Belgium, Tunisia, and Germany have explored the mid-infrared (MIR) responses to heat 
stress in dairy cows. This study aimed to investigate the effects of heat stress on LKV 
Baden-Württemberg (LKVBW) farms within a 20 km radius of weather stations using 
all available datasets related to milk production traits and predicted milk biomarkers 
derived from MIR spectra. Additionally, the study sought to determine if there are 
differences in heat stress indicators between data collected from barn weather 
stations versus public weather stations. Meteorological data from public weather 
stations in Baden-Württemberg (BW) and barn weather stations from MobiMets and 
Pessl Instruments devices, including temperature and humidity, were combined with 
data collected by the milk recording organization. THI values were calculated using 
mathematical calculations for daily averages, and a three-day average was linked to 
farm data based on the day of milk recording collection. These datasets were then 
linked to each animal using monthly spectral data for each cow from 500 selected 
LKVBW farms. The model was developed as part of the HappyMoo project using MIR 
spectral data from Bentley Instruments devices collected in the LKVBW database from 
2012 to 2019, with external validation conducted on a dataset containing MIR spectral 
data from 2020 to 2022. Barn weather data was collected in Projekt KlimaCO, with 
MobiMets data from 2020 to 2022 and Pessl Instruments data from 2021 to 2023. A 
machine learning algorithm was implemented in R using the “glmnet” package. The 
spectral data were standardized using the EMR method and preprocessed with the first 
derivative algorithm using the Savitzky-Golay filter. Differences were observed in MIR 
spectra recorded under THI and thermoneutral conditions, with certain wavenumbers 
of the MIR spectrum showing varying responses. The THI index was established 
based on the relationship between the THI value of individual cows and the mean THI 
value of the farm. Pearson correlations were calculated using the THI index and milk 
parameters in the R environment with the “corrplot” library. The THI index showed 
negative correlations with milk yield (0.15), lactose (0.12), acetate (0.33), blood 
NEFA (0.2) and positive correlations with fat content (0.59), protein content (0.40), 
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blood BHB (0.25), blood glucose (0.30), blood calcium (0.21) and fatty acids (0.35). 
No differences were found between public weather stations and barn weather stations. 
Additional analysis is required within the scope of upcoming projects like HoliCow and 
ResKuh to identify possible MIR heat stress phenotypes derived from milk. These 
phenotypes could be utilized for herd management and breeding purposes to pinpoint 
animals that are resilient to heat stress.

Keywords: MIR, spectral data, dairy cows, heat stress. 
Presented at the ICAR Anual Conference 2024 in Bled at the Session 2: New tools 
to extend the horizon of milk mid-infrared spectrometry 

The decline in small and medium-sized dairy farms has led to the HoliCow1 project’s 
emphasis on assisting these farmers. The primary objective is to transform intricate 
Big Data into accessible, cost-effective, and remote decision-making tools for farmers. 
This project aims to combat farm abandonment, improve animal welfare, and tackle 
climate-related challenges. By offering a novel solution, HoliCow strives to equip farmers 
with the tools needed to make informed choices, fostering sustainability in agriculture, 
enhancing livestock welfare, and safeguarding the environment.

To achieve this goal, a cross-border database has been set up to encompass 
various dairy breeds on farms across North-West Europe. The objective is to gather 
sufficient data to establish a reliable alert system. It is crucial to acknowledge the 
significant role that farms play in fostering robust and eco-friendly communities. 
Farmers are key advocates for animal welfare and climate resilience. HoliCow aims 
to consolidate all incoming data sources and streamline them effectively to provide 
a comprehensive overview of the welfare status of cows. In addition, HoliCow will 
incorporate animal‑related data, milk spectral predictions refined through enhanced 
equations from previous projects like Robust Milk, OptiMIR, GplusE, HappyMoo, or 
D4Dairy, as well as external data such as climate information sourced from public 
weather stations. Moreover, the project will leverage interactive machine learning 
models to promote transparent farming practices. Therefore, the efficient processing 
of vast amounts of Big Data, including climate and weather data, is essential to assist 
farmers in making informed decisions and implementing sustainable practices that 
enhance their operations and benefit the broader community. This integration will 
empower farmers to remain engaged with their local communities and embrace modern 
agricultural techniques using cost-effective tools.

HoliCow will enable farmers to remotely monitor individual cows and their surroundings. 
Recognizing the importance of each animal compared to larger farms, receiving 
“early warnings” about an individual’s status is economically vital. HoliCow will drive 
the collaborative adoption of integrated and innovative methods to facilitate this 
transformation for farmers, as well as the integration of these methods into regional 
agricultural innovation strategies and advisory services. HoliCow will help establish 
NWE as a pioneering force in innovative solutions for rural areas with a diverse cultural 
landscape. The approach will also address climate change mitigation and resilience by 
incorporating climate data, nitrogen efficiency, and methane predictions. Heat stress is 
a crucial factor affecting dairy cow performance and productivity, leading to decreased 
milk yields and metabolic disorders. As global warming trends continue, the impact of 
heat stress is receiving more attention even in temperate regions like central Europe. 
Traditionally quantified by the temperature-humidity index (THI), heat stress is also 
known as the discomfort index. Different countries have varying THI thresholds for 
negative effects on milk production; for example, the US uses a threshold of 72, while 
Luxembourg and Germany use thresholds of 62-60 that are often exceeded during the 
summer months. Studies have shown that for each THI unit increase, there can be a loss 
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of 0.08 to 0.26 kg of milk per cow. In the HappyMoo project, a THI of 68 resulted in a 
21% decrease in milk production and a 9.6% reduction in dry matter intake on average.

Through the HappyMoo Project, Amammou et al. (2021) have created a milk MIR 
spectra based THI model to forecast the cow’s THI as a 3-day average before the 
testing day, aiming to determine the cow’s resilience to heat stress. The primary goal 
of the HappyMoo research was to analyse the changes in milk MIR spectra linked to 
THI within a specific subset of the southwest German dairy herd under milk monitoring 
and explore the potential for identifying clear indicators of heat stress in individual milk 
samples.

The data utilized for the modelling was sourced from 120 farms across 
Baden‑Württemberg, representing a subset of data from approximately 4500 dairy 
farms in the region. THI values were determined using data from 67 local German 
weather stations (DWD) for each farm. In Figure 1, the map on the left displays coloured 
dots representing all 4,500 farms participating in milk recording, while the map on the 
right highlights selected farms and weather stations with red dots. The geographical 
coordinates and measurements from these sensor points are openly available on the 
DWD server. Milk analysis and milk MIR spectral data were accessible for the farms 
between 2012 and 2019, encompassing the primary breeds and production systems 
in the area. To link to temperature and humidity data, the closest active sensor point 
at the time of milk recording was selected.

The statistical analyses and machine learning utilized spectral data from Bentley FTIR 
analysers that were standardized using the EMR/CRA-W procedure. Absorbance 
values from the spectra were used to calculate the first derivative, and 212 relevant 
wave-numbers were selected. Additional input parameters included breed, parity, 
milking time, days in milk (DMI) categories, and age at calving. As a reference point, 
a three-day average of THI values prior to the day of milk recording was determined. 
Various linear regression methods such as PCR, PLS, CPPLS (pls package in R), 
and GLMNET (glmnet package in R) were employed. Three different calibration and 
validation subsets were created for validation purposes, based on spectra, animals, 
and cross-validation selection.

Material and 
methods

Experimental data

Figure 1. Map showing the positions of farms in relation to weather stations.
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Soyeurt (2024) has introduced an innovative approach to creating a globally 
representative spectral database (WRSD) to tackle the challenges associated with 
spectral extrapolation in predicting milk yield traits for new samples. This method 
is efficient and space-efficient, employing a two-stage selection process. Initially, a 
decomposition matrix is generated through principal component analysis using a dataset 
of approximately 2,137,394 records. Subsequently, an iterative spectral selection is 
conducted based on a sample location index derived from the principal components 
(PC). The frequency of spectra occurrence for each location index is calculated to 
influence the subsequent barycentre calculations. Despite 10 PCs explaining 95% of 
spectral variability, the barycentre pattern of selected spectra accurately represents 
the entire dataset, showcasing the effectiveness of a location index based on only 3 
PCs. Finally, a WRSD was created using the HoliCow data samples with the same 
algorithm, selecting around 103,477 spectral data points from a total of 2,137,394 million 
spectral data collected from 503 farms.

Hierarchical clustering was employed to identify patterns among futures rather than 
independent samples based on the predicted spectral dataset. The Ward’s agglomerative 
method with Euclidean distance (Ward, 1963) was selected for its ability to effectively 
differentiate groups in a multivariate Euclidean space. However, due to the extensive 
amount of data, only records from April to October and from the years 2018-2023 were 
included, around 55,759 records used for calculating distances for each observation 
and cluster analysis. To address the clustering issue, a divide‑and‑conquer strategy 
was implemented by dividing the data into 100 subsets, clustering them separately, 
and then merging the centroids obtained from each subset (Wang et al., 2016). This 
process was repeated five times to ensure the reliability of the final clustering outcomes. 
The inertia of the dendrogram was utilized to determine the optimal number of groups 
by identifying a point where there is a significant decrease in inertia gain. This iterative 
approach enabled efficient analysis of the data despite its magnitude, showcasing a 
practical solution for managing challenges associated with big data.

Traditional statistical methods such as ANOVA were not appropriate for this analysis 
due to the high volume of records, which could result in all effects being considered 
significant. Instead, the emphasis was on interpreting the clusters to understand their 
implications. To compare the clusters, their distinctions were highlighted by calculating 
the least squares means (LSM) per group and displaying them in bar graphs on a 
standardized scale (Franceschini et al., 2022).

The calibration methods were chosen based on the information provided in Table 1, 
which includes the statistical parameters for the Calibration data of the Weather Station 
THI3mean equations. A total of 140,618 records were utilized for each model, with 
a THI value ranging from 25 to 75, a mean of 51, and a standard deviation of 8.03.

The root squared mean ranged from 0.76 to 0.89, with RPDs varying between 2.05 and 
3.08. Ultimately, the GLMNET model emerged as the most robust option, primarily due 
to its ability to eliminate irrelevant or noisy input parameters, reducing the number of 
variables to the essential minimum required. The model developed by LKV-BW was the 
first model to incorporate spectral data analysis and weather data from public stations; 

Spectra selection

Clustering approach

Cluster interpretation

Results and 
discussion
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although it does not predict heat stress, it forecasts the temperature and humidity 
index. The prediction results are promising, with an R² value close to 0.89 based on 
THI3mean and the predicted CowTHI3mean value. Table 2 displays the calibration 
and validation datasets for the GLMNET model. To randomly select different datasets, 
the Mahalanobis distance was calculated for the first calibration and validation model 
among all spectral data points. This distance is determined by measuring the test point’s 
distance from the centre of mass divided by the width of the ellipsoid in the direction of 
the test point (Mahalanobis, 1936). Based on this distance calculation, 70% of spectral 
data points were chosen for the calibration model and 30% for the validation model. 
For the second calibration and validation dataset, random selection was performed 
among all animals. Based on the total number of animals in the dataset, 70% were 
included in the calibration model and 30% in the validation model. The cross-validation 
model is based on the K-fold cross-validation process, which can be implemented 
using the cv.glmnet function.

In addition to the standard glmnet parameters, cv.glmnet introduces its own unique 
parameters such as nfolds (indicating the number of folds), fold id (allowing for user-
supplied folds), and type.measure (specifying the loss metric used for cross-validation): 
“deviance” or “mse” for squared loss, and “mae” for mean absolute error (Friedman 
et al., 2010).

Additionally, predictions of MIR spectral data for fatty acids and minerals (RobustMilk 
and OptiMIR), ketone bodies (OptiMIR and OptiKuh), as well as health and immunity 
markers (HappyMoo, GplusE, and D4Dairy) have been calculated using various 
MIR models from the afore mentioned projects. These predictions, along with milk 
components, were used to calculate Pearson correlations based on CowTHI3mean 
and WSmean3THI (see Figure 2). 

Research conducted by Dale et al., 2023 and Lemal. P., et al., 2023 identified a positive 
correlation between the CowTHI3mean indicator and WSmean3THI in Germany and 
Belgium. This suggests that utilizing this indicator may be more effective than traditional 
traits such as milk yield, protein, or fatty acids. 

Table 1. Statistical parameters for the calibration data of the THI3mean equationTable 1. Statistical parameters for the calibration data of the THI3mean equations. 
 

Model Number of 
samples Min Mean Max SD SEC R2 RPD 

PCR 140,618  25  51  75 8.03 2.51 0.76 2.05 
PLS 140,618  25  51  75 8.03 2.47 0.77 2.09 
MVR 140,618  25  51  75 8.03 2.47 0.77 2.09 
CPPLS 140,618  25  51  75 8.03 2.44 0.77 2.11 
GLMNET 140,618  25  51  75 8.03 2.58 0.89 3.08 

 
 

Table 2. Identification results of the final model – THI3mean based on the spectral model (1st Calibration), 
animal model (2nd Calibration) and Cross Validation model.
Table 2. Identification results of the final model – THI3mean based on the spectral model (1st 
Calibration), animal model (2nd Calibration) and Cross Validation model. 
 

Model Number of 
samples Min Mean Max SD SEC R2 RPD 

1st Calibration 98.434 25 51 75 7.92 2.58 0.89 3.08 
1st Validation 42.184 25 50 75 7.93 2.58 0.89 3.08 
2nd Calibration 98.435 25 51 75 7.93 2.58 0.89 3.07 
2nd Validation 42.183 25 50 75 7.93 2.57 0.90 3.09 
Cross Validation 140.618 25 51 75 8.03 2.58 0.89 3.08 
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Figure 2. Pearson correlations between milk parameters and WSTHI3Mean and CowTHI3mean values.
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Figure 3. Data used in unsupervised clustering.
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For the unsupervised cluster analysis, the following mainly milk MIR based prediction 
variables were utilized: acetone in milk, blood NEFA (B_NEFE), citrate, CowTHI3mean, 
model for inside barns THI prediction based on Pessl and MobiMets devices 
(CowINTHI3mean), energy-corrected milk (ECM), fat, lactose, magnesium, sodium 
(natrium), blood adiponectin (O_B_Adiponenctin), blood calcium (OK_B_Ca), blood 
glucose (OK_B_Glucose), blood insulin (OK_B_Insulin),as well as omega-6 fatty acid, 
preformed fatty acid, protein, and somatic cell score (SCS). The distribution of the 
dataset used can be observed in Figure 3.

As accurately identifying heat stress based solely on CowTHI3mean values is 
challenging, cluster analysis was conducted in the HoliCow predictions dataset using 
these predictions as variables specifically between April and October, as well as 
from 2018 to 2023. The results revealed three distinct groups (refer to Figure 4). To 
further comprehend the cluster analysis, Classification and Regression Trees (CART) 
were utilized. It was observed that the trees’ classification depended on whether the 
dependent variable was a numeric value.

In the CART analysis, the variables utilized for classification into the three groups were 
acetone in milk, blood NEFA, CowTHI3mean, lactose, blood glucose, omega-6 fatty 
acid, preformed fatty acid, and protein. These specific variables were chosen based on 
their significance in determining heat stress levels within the dataset. The inclusion of 
these factors allowed for a more comprehensive and low accurate classification of the 
data into distinct groups based on their respective values. As shown in Figure 5, class 
1 was only predicted well at 54%, with 30% of the entire dataset classified as class 
1. Class 2 was classified between 53% and 77% with a balanced accuracy of 63%, 
while class 3 was classified between 48% and 76% with a balanced accuracy of 71%. 
The cluster with the highest accuracy from the CART model was class 3, which also 
exhibited higher mean standard prediction (msp) for all components considered in the 
modelling process (Figure 6). Protein, magnesium, blood insulin, blood calcium, fat, and 
blood adiponectin had a positive msp higher than 0.75, while acetone, CowTHI3mean, 
ECM, preformed FA, and lactose had a negative msp lower than -0.35.

Figure 4. Cluster Analysis: Hierarchical clustering – LKVBW data set

 

 
Figure 4. Cluster Analysis: Hierarchical clustering – LKVBW data set. 
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Figure 5. Classification and regression trees based on the cluster analysis.

Figure 6. Correlation between cluster response and milk recording data and MIR 
spectra predictions used for clustering.
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Figure 6. Correlation between cluster response and milk recording data and MIR spectra predictions used for 
clustering. 
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In the initial phase of the HoliCow project, significant progress and promising results 
have been noted. The project has shown great potential in achieving its objectives and 
goals, indicating a positive trajectory for future developments. The early findings suggest 
that the project is on track to deliver valuable insights and advancements in the field, 
setting a strong foundation for further research and innovation. The next steps involve 
validating the predictions against heat stress or health problems situations by utilizing 
the same animals in the time series analysis and closely monitoring the development 
of the clusters. The challenge of selecting the most suitable clustering algorithm arose 
due to the array of options available, including K-means, hierarchical clustering, and 
DBSCAN. The decision-making process considered our data and research objectives, 
with valuable input from the HoliCow research team and insights from previous studies 
(Franceschini et al., 2022). Cluster analysis is an iterative procedure, and plans are 
underway to interpret the results effectively to gain a deeper understanding of each 
cluster’s characteristics in the upcoming phase of the project. It is crucial to refine the 
outcomes and improve the quality of clustering for practical implementation in pilot 
farming scenarios.
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Heat stress (HS), particularly prevalent in tropical regions such as Taiwan, poses 
significant threats to animal health, dairy production, and the composition of milk. 
This stress affects not only the welfare and productivity of cows but also increases 
the costs of herd management, thereby impacting the profitability of dairy farming. 
Under the ongoing climate change, Taiwan is expected to experience more frequent 
high-temperature days, emphasizing the need to evaluate and mitigate the adverse 
effects of HS on dairy production. HS induces various physiological changes in 
dairy cattle, including increased respiration and heart rates, along with a rise in core 
body temperature. The most profound impacts of HS are observed in the form of 
reduced dry matter intake and a decline in milk yield. These changes are attributed to 
energy‑intensive metabolic adaptations that cattle undergo for heat dissipation, which 
in turn contribute to the decrease in milk production. An experimental study of HS was 
conducted over 4 consecutive days, with a daily average temperature-humidity index 
(THI) exceeding 74, followed by a recovery period with an average daily THI below 
68. Milk samples were collected bi-daily during this period, which included a baseline 
phase (days 1-3), the HS phase (days 5 and 7), and the recovery phase (days 9 and 
11). These samples were analyzed for their fatty acid (FA) profiles, including saturated 
FA (SFA), unsaturated FA (UFA), mono-unsaturated FA (MUFA), poly-unsaturated FA 
(PUFA), short-chain FA (SCFA), medium-chain FA (MCFA), long-chain FA (LCFA), 
total de novo FA, mixed FA, and preformed FA, using MilkoScan FT+ 300 equipped with 
Fourier-transform infrared spectra. The results from this experiment showed that HS 
caused a significant reduction in the relative percentage of SFA, de novo FA, mixed FA, 
MCFA, C14:0, and C16:0 FAs, accompanied by an increase of that in UFA, preformed 
FA, LCFA, C18:0, and C18:1 FAs. These changes in the FA profile are expected to 
alter the physical properties and nutritional value of milk fat. While some FA levels 
partially returned to normal during the recovery phase, they did not fully revert after 
short periods of recovery. This study highlights the metabolic adaptations of lactating 
cattle in response to acute HS. There was a noticeable shift in the milk FA profile, 
characterized by a decrease in FAs predominantly containing SCFA to MCFA, and 
an increase in those primarily consisting of LCFA. These alterations in FAs could 
potentially serve as biomarkers for HS in dairy cattle, providing a valuable tool for daily 
monitoring and management. In conclusion, HS profoundly influences the FA profile 
of bovine milk, signifying a metabolic shift towards increased LCFA. This alteration, 
not completely reversible even in a short-term recovery phase, strengthens the critical 
need for effective HS management and abatement strategies in dairy farming. This is 
particularly urgent given the rising global temperatures, which could exacerbate the 
HS challenges to the dairy industry in Taiwan.
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HS is particularly prevalent in tropical regions such as Taiwan and poses significant 
threats to animal health, dairy production, and the composition of milk (Liu et al, 2019). 
This stress not only affects the welfare and productivity of cows but also increases the 
costs of herd management, thereby impacting the profitability of dairy farming (Kadzere 
et al, 2002). Under ongoing climate change, it is expected that Taiwan will experience 
more frequent high-temperature days (Ho et al, 2016) which emphasizes the need to 
evaluate and mitigate the adverse effects of HS on dairy production (Summer et al, 
2019). Physiological changes induced by HS in dairy cattle include increased respiration 
and heart rates along with a rise in core body temperature (Polsky and Keyserlingk, 
2017). The most profound impacts are observed in reduced dry matter intake and 
decline in milk yield - attributed to energy-intensive metabolic adaptations for heat 
dissipation contributing to decreased milk production.

The influence of HS on milk composition, beyond milk yield, has been the subject of 
extensive research. Several studies have reported a decrease in total protein and total 
fat content in milk under HS conditions (Bernabucci et al, 2015; Hill and Wall, 2015). 
However, conflicting findings exist, with some studies indicating no significant decrease 
in fat percentage in heat-stressed cows (Hammami et al, 2015; Lacetera et al, 2003). 
Additionally, there is evidence suggesting that an increase in the THI is associated 
with a decrease in the content of short-chain fatty acids (SCFA) and medium-chain 
fatty acids (MCFA), and an increase in long-chain fatty acids (LCFA) (Lacetera et al, 
2003). Despite these findings, there is a lack of detailed information regarding the 
impact of HS and subsequent recovery on milk FA profiles. Therefore, our study aims 
to investigate the effects of HS and subsequent recovery on milk FA profiles.

•	 The study was conducted using lactating Holstein cows in a commercial dairy farm 
in Taiwan. A total of 77 Holstein dairy cows in early lactation were subjected to a 
heat challenge for over 3 consecutive stages. First with a baseline phase with a 
temperature-humidity index (THI) below 68. Then, an HS phase with a daily average 
THI exceeding 74, followed by a recovery period with an average daily THI below 
68. Milk samples were collected bi-daily during this period, which includedBaseline 
phase (day 1-3).

•	 HS phase (day 5 and day 7), and the

•	 Recovery phase (day 9 and day 11). 

Milk samples were thoroughly analyzed for a variety of fatty acid profiles, which 
included saturated FA (SFA), unsaturated FA (UFA), mono-unsaturated FA (MUFA), 
poly‑unsaturated FA (PUFA), short-chain FA (SCFA), medium-chain FA (MCFA), 
long‑chain FA (LCFA), de novo FA/newly synthesized FA, mixed FA, C14:0 fatty acid 
(FA), C16:0 FA, C18:0 FA, and C18:1 FA . The analysis was performed using the 
MilkoScan FT+ 300 equipped with Fourier-transform infrared spectra. 
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Statistical analysis included the use of ANOVA and Tukey’s post hoc test to assess 
differences in FA profiles among the different days in baseline, HS, and recovery 
phases. 

The results from the study showed that HS caused a significant reduction in the 
relative percentage of SFA, de novo FA, mixed FA, MCFA, C14:0, and C16:0 FAs, 
accompanied by an increase in USFA, preformed FA, LCFA, C18:0, and C18:1 FAs 
(Figure 1 and 2). These changes in FA profiles indicate that HS leads to alterations 
in milk composition, with a shift towards higher levels of unsaturated and long-chain 
fatty acids. The metabolic shifts observed during HS, particularly the decrease in FAs 
predominantly containing SC FA to MCFA, and an increase in those primarily consisting 
of LCFA, demonstrate the profound influence of HS on the metabolic adaptations of 
lactating cattle (Table 1).

The recovery phase showed some restoration in the FA profiles, with a partial reversal 
of the changes observed during HS. While some FA levels partially returned to normal 
during the recovery phase, they did not fully revert after short periods of recovery (Figure 
1 and 2). The de novo FA, mixed FA, SCFA, C14:0 FA, C16:0 and MCFAs’ levels 
showed a partial recovery but remained lower than baseline levels during the recovery 
phase. For UFA, PUFA, LCFAs’, C18:0 and C18:1 FAs didn’t show significant reduction 
during the recovery phase. During this period MUFA and preformed FAs significantly 
decreased (P < 0.05), suggesting that HS impact on bovine milk’s FA profiles is not 
completely reversible in the short term (Table 1).

Statistical analysis 

Results

Effects of HS on FA 
profiles in milk

Recovery of FA 
Profiles following HS

 
Table 1. Effect of heat stress on fatty acid (FA) composition of milk fat. 
 

Milk FA 
mg/g of total FA 

Baseline 
D5 heat 
stress 

D7 heat 
stress 

D9 
Recovery 

D11 
Recovery 

P value 

C14:0 96.9a 93.2a 86.1b 78.4c 83.1bc < 0.0001 
C16:0 347.8a 301.2d 309.9cd 316.7c 334.4b < 0.0001 
C18:0 84.1b 83.8b 89.5a 90.4a 88.4ab < 0.0001 
C18:1 198.7d 223.8bc 232.6ab 236.1a 220.8c < 0.0001 
Saturated FA 681.1a 619.7bc 611.2c 606.1c 633.2b < 0.0001 
Unsaturated FA 234.7c 262.8b 278.4a 275.2a 254.1b < 0.0001 
Mono-
unsaturated FA 

213.1d 242.5b 253.5a 249.6ab 229.3c < 0.0001 

Poly-
unsaturated FA 

21.7b 20.3b 24.9a 25.6a 24.8a < 0.0001 

SCFA 83.2a 72.5b 71.7b 71.7b 76.4b < 0.0001 
MCFA 525.7a 452.6c 453.9c 457.5c 488.9b < 0.0001 
LCFA 299.9c 322.7b 337.9a 346.5a 319.6b < 0.0001 
Total de novo 
FA 216.1a 169.0c 165.2c 172.0c 190.8b < 0.0001 

Mixed FA 385.4a 357.1c 366.3bc 366.9bc 378.5ab 0.008 
Preformed FA 331.9c 384.6a 387.9a 386.5a 355.8b < 0.0001 
Each value is the mean of 77 samples. 
Total de novo FA = sum of C4:0 to C14:1 fatty acids; total mixed FA = sum of C16:0 and C16:1 fatty acids; total preformed = 
sum of all fatty acids with more than 15 carbon atoms. 
a-d Least squares means with different superscripts within a row are significantly different (P < 0.05). 

 
  

Table 1. Effect of heat stress on fatty acid (FA) composition of milk fat.
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Figure 1. Effect of heat stress on the relative abundance of saturated fatty acids (SFA), 
monounsaturated fatty acids (MUFA), polyunsaturated fatty acids (PUFA), and unsaturated 
fatty acids (UFA) in milk. Abundance ratios for SFA, MUFA, PUFA, and UFA during days 5 
and 7 of heat stress (HS) and days 9 and 11 of recovery are presented in comparison to the 
baseline levels observed on days 1 to 3. Error bars represent standard error (n = 77). 
Statistically significant differences among different HS and recovery phases are indicated by 
different superscripts (P < 0.05).  
  

Figure 1. Effect of heat stress on the relative abundance of saturated fatty acids (SFA), monounsaturated 
fatty acids (MUFA), polyunsaturated fatty acids (PUFA), and unsaturated fatty acids (UFA) in milk. Abundance 
ratios for SFA, MUFA, PUFA, and UFA during days 5 and 7 of heat stress (HS) and days 9 and 11 of recovery 
are presented in comparison to the baseline levels observed on days 1 to 3. Error bars represent standard 
error (n = 77). Statistically significant differences among different HS and recovery phases are indicated by 
different superscripts (P < 0.05).

 
Figure 2. Effect of heat stress on the relative abundance of de-novo fatty acids (de-novo FA), 
mixed fatty acids (mixed FA), preformed fatty acid (preformed FA), short chain fatty acid 
(SCFA), medium chain fatty acid (MCFA), long chain fatty acid (LCFA), C14:0 fatty acid (FA), 
C16:0 FA, C18:0 FA, and C18:1 FA during days 5 and 7 of heat stress (HS) and days 9 and 11 
of recovery are presented in comparison to the baseline levels observed on days 1 to 3. Error 
bars represent standard error (n = 77). Statistically significant differences among different HS 
and recovery phases are indicated by different superscripts (P < 0.05).  
 

Figure 2. Effect of heat stress on the relative abundance of de-novo fatty acids (de-novo FA), mixed fatty 
acids (mixed FA), preformed fatty acid (preformed FA), short chain fatty acid (SCFA), medium chain fatty 
acid (MCFA), long chain fatty acid (LCFA), C14:0 fatty acid (FA), C16:0 FA, C18:0 FA, and C18:1 FA 
during days 5 and 7 of heat stress (HS) and days 9 and 11 of recovery are presented in comparison to the 
baseline levels observed on days 1 to 3. Error bars represent standard error (n = 77). Statistically significant 
differences among different HS and recovery phases are indicated by different superscripts (P < 0.05).
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It is well established that most of the C4:0 to C14:0 and almost half of the C16:0 FA 
in milk are synthesized de novo in the mammary gland, whereas the rest of the C16:0 
and approximately all LCFA originate from blood lipids (Knudsen et al, 1986). HS can 
significantly alter the synthesis and composition of these FAs in bovine milk (Li et 
al, 2016). Our study’s findings highlight the metabolic adaptations of lactating cattle 
in response to HS. The significant alterations in the FA profiles, particularly the shift 
towards increased LCFA, are indicative of the physiological changes that occur in dairy 
cows during HS and subsequent recovery periods.

Understanding these changes in the FA profile is crucial for evaluating the impact 
of HS on the nutritional composition of milk and its potential implications for human 
consumption. Furthermore, the results suggest that the altered FA profiles observed 
during HS may have implications for dairy product quality (Jenkins and McGuire, 2006). 
These findings have important implications for the dairy industry, as they demonstrate 
that HS can significantly impact the FA composition of milk. HS affects the quality of 
dairy products primarily by altering the composition of FAs in cow’s milk, which can have 
implications for the nutritional value, taste, and processing properties of the products 
(Liu et al, 2017). Research indicates that HS causes changes in the triacylglycerol 
(TAG) profile of milk, with a reduction in TAG groups containing SCFA and MCFA 
and an increase in those containing LCFA. This change in TAG composition could 
modify the physical properties of milk fat. Additionally, HS was shown to significantly 
reduce the levels of certain polar lipid classes, which are main structural constituents 
of the milk fat globule membrane and play a critical role in stabilizing the milk emulsion 
system (McManaman, 2014).

The reduction in SCFA and the increase in LCFA during HS is a clear indication of the 
metabolic adaptations of lactating cattle to high-temperature conditions. Hammami et 
al (2015) also showed similar results, indicating that the rise in THI between seasons 
correlated with a reduction in the content of SCFA and MCFA, and an increase in 
LCFA. HS might also lead to a decline in total protein and total fat content in milk, which 
can affect the texture and flavor of dairy products (Chandan, 1997). Furthermore, the 
reduction in milk fat globule membrane polar lipids, such as sphingomyelin which has 
beneficial effects on human health, could have implications for the nutritional value of 
milk and its health benefits (Lopez et al, 2008). Consequently, HS not only presents 
challenges for maintaining the welfare and productivity of dairy cattle but also for 
preserving the quality of milk and dairy-related foods.

The findings of this study underscore the need for effective HS management strategies 
in dairy farming, especially in regions like Taiwan that are projected to experience 
more frequent high-temperature days due to climate change. Adaptive measures such 
as improved ventilation, access to shade, and cooling systems can help mitigate the 
adverse effects of HS on dairy cattle, thereby preserving milk quality and quantity. 
Furthermore, the observed partial recovery of FA profiles during the recovery phase 
suggests that interventions to support lactating cows during and after HS periods 
can aid in restoring milk composition to some extent. This highlights the potential for 
targeted nutritional and management interventions to minimize the long-term impact 
of HS on milk FA profiles and overall dairy production.

The study also underscores the potential use of the observed changes in FA profiles as 
biomarkers for HS in dairy cattle. The relatively rapid change of these markers made 
it possible for routine monitoring and early detection of heat stress in dairy cows. This 
suggests that monitoring the FA profiles of milk could provide a valuable tool for daily 
assessment and management of HS in dairy farming. Identifying and implementing 
effective heat alleviation strategies based on these biomarkers could help minimize 
the impact of HS on dairy production and product quality.

Discussion
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The study provides important insights into how heat stress affects lactating cattle’s 
metabolism and milk composition. It highlights the increase in long-chain fatty acids in 
bovine milk and emphasizes the need for proactive measures to protect dairy production 
from environmental challenges. Understanding these biochemical changes can help 
dairy farmers implement strategies to maintain animal well-being and milk quality in 
changing climate conditions, while also serving as valuable biomarkers for monitoring 
heat stress effects on milk production.
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Irish dairy producers milk record their cows, on average, 4 times annually; results 
reported include milk fat and protein percent (as well as milk yield). Farmers receive 
a mean herd (i.e, bulk tank) fat and protein percent generally every two days. 
Discrepancies often exist between both measures taken at approximately the same day.

The mean of the reported fat and protein percent of all cows milk recorded on a given 
day in a herd was compared to the bulk milk results taken on the same day; also 
compared was the mean of the three bulk milk collections taken before and after a 
milk recording event.

The dataset comprised of 4,660 test day milk recordings from 1,784 herds in the year 
2023. Fat and protein percentages were, on average, underestimated for the milk 
recording sample compared to the bulk samples. The discrepancy between test day milk 
recordings and bulk collections were greater for fat percentage then protein percentage.

On average, milk recorded fat and protein percentages both underestimated relative to 
the bulk collections. The mean of the three bulk collections taken after a milk recording 
deviated, on average, more from the milk recording values, while those taken on the 
same day and before the recording were better aligned.

The Pearson correlations between milk recorded and bulk tank fat percent taken on 
the same day was 0.857 whilst the mean of the three bulk collections before and after 
a given milk recording had respective Pearson correlation of 0.841 and 0.828.

The root mean square error (RMSE) of the residuals between milk recorded and bulk 
collected fat on the same day were 0.347, whereas the RMSE for the mean of the three 
bulks collections before and after a milk recording were 0.353 and 0.424, respectively. 
This analysis also highlighted the influence of factors such as the type milk recording 
device, herd average cow yields and seasonal effects on the values reported in both 
milk recordings and bulk collections. However, they only scratch the surface when trying 
to gain a true understanding of the reasons discrepancies, particularly in fat % occur.

Keywords: milk recording; Irish dairy. 
Presented at the ICAR Anual Conference 2024 in Bled at the Session Session 3: 
Factors Affecting the Accuracy of the Recording Day
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Milk recording (MR) is a crucial management tool for Irish dairy farmers, providing 
valuable insights into herd health and performance. Since the abolition of milk quotas in 
2015, the practice of milk recording has grown steadily on Irish dairy herds.  According 
to the latest figures from the ICBF database, over 1.1 million cows are milk recording 
across 9,100 herds. Typically, Irish dairy producers milk record their cows’ four times 
annually, receiving data on milk fat, protein percentages, and yield.

Farmers also receive bulk tank (BT) results, which report the mean herd fat and 
protein percentages approximately every two days. However, discrepancies often arise 
between the results obtained during milk recordings and the bulk milk samples, even 
when both are measured on the same day.

The primary objective of this study is to explore and quantify the discrepancies between 
milk recording and bulk milk collection results on Irish dairy farms. Furthermore, the 
study aims to investigate factors that may contribute to inconsistencies in the reported 
fat and protein percentages, thereby improving the understanding of why differences 
may occur.

The data used in this study were sourced from a pre-existing database managed by the 
Irish Cattle Breeding Federation (ICBF). Test day milk recording (MR) and bulk tank (BT) 
herd averages were extracted from this database. MR samples were recorded using 
the alternative AM-PM recording scheme, as approved by the International Committee 
for Animal Recording (ICAR, 2021). BT samples were collected and reported by dairy 
processors during on-farm bulk milk collections.

The dataset included 4,660 test day MR records from 1,784 herds, each of which had 
a corresponding bulk tank recording taken on the same day. All herds had a minimum 
of four milk recordings in 2023 and were contracted to supply milk to dairy processors.

The mean fat and protein percent of all cows recorded in a herd on a given test day 
were compared to the corresponding bulk milk results collected on the same day. 
Additionally, comparisons were made to the mean fat and protein percent of the three 
bulk milk collections taken both before and after a milk recording event. Accuracy was 
assessed using Pearson correlations and the root mean squared error (RMSE) of the 
residuals between MR and BT results.

Table 1 presents the summary statistics for fat and protein percentages recorded during 
MR and BT collections, including the mean, standard deviation (SD), and minimum/
maximum values.

On average , MR fat and protein percent is underestimated compared to the BT with 
the largest discrepancies occurring in fat percent. These discrepancies are reflected 
by Pearson correlations of 0.853 and 0.929 for fat and protein percent, respectively, 
with corresponding RMSE values of 0.352 for fat and 0.124 for protein percent.

The mean of the three bulk milk collections taken after a milk recording deviated 
more from the milk recording values than those taken on the same day or before the 
recording. Pearson correlations between MR and BT fat percent taken on the same day 
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were 0.857, while the correlations for the mean of the three bulk collections before and 
after the MR were 0.841 and 0.828, respectively. The RMSE of the residuals between 
MR and BT fat percent was 0.347 for same-day comparisons, and 0.353 and 0.424 
for the bulk collections before and after, respectively.

Table 3 shows the impact of milk recording device type on the Pearson correlations and 
RMSE for fat and protein percent between MR and BT samples. The EDIY recording 
method had higher correlations and RMSE values compared to the manual recording 
method.

Average test day cow yields ranged from less than 10L to 40L across all test day MR 
events. Herds were categorized based on average test day cow yield, and Pearson 
correlations and RMSE were calculated within each category. A downward trend 
was observed in fat percent correlations as test day yields increased, suggesting 
that discrepancies in fat percent grow with higher yields. However, the differences in 
RMSE across yield categories were less pronounced. Similarly, correlations for fat 
percent were lower during the peak milk season, when yields were higher, compared 
to the off-peak season when yields were lower. The RMSE across seasons showed 

Impact of recording 
type 

Impact of test day 
yield and season 

Table 1. Summary statistics of MR & DB milk fat & protein percentage. 
 

Trait  Mean SD Min/Max 
MR Fat % 4.33 0.56 2.87/7.12 
 Protein % 3.67 0.29 2.92/5.07 
BULK Fat % 4.52 0.52 3.36/6.88 
 Protein % 3.75 0.29 2.97/4.91 

 
 
Table 2. Pearson correlation and RMSE between MR fat percent and the bulk fat percent 
taken on the same day, the mean of the 3 bulks before and after. 
 

Fat % 
Pearson 

Correlation 
RMSE 

Same Day MR-Bulk 0.857 0.347 
Mean of Three Bulks Before 0.841 0.353 
Mean of Three Bulks After 0.828 0.424 

 
 
Table 3. The Impact of recording service type on Pearson Correlations and RMSE of fat 
& protein percent between MR and bulk samples. 
 

Recording 
type 

Number of 
herds 

Fat % 
correlation 

Fat % 
RMSE 

Protein % 
correlation 

Protein % 
RMSE 

EDIY 2,036 0.89 0.36 0.94 0.13 

Manual 2,624 0.82 0.35 0.92 0.12 

 

Table 1. Summary statistics of MR & DB milk fat and protein percentage.

Table 2. Pearson correlation and RMSE between MR fat percent and the bulk fat percent 
taken on the same day, the mean of the 3 bulks before and after.

Table 3. The Impact of recording service type on Pearson Correlations and RMSE of fat 
and protein percent between MR and bulk samples.
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only minor differences, suggesting that discrepancies in fat percent are less sensitive 
to seasonal variations than yield levels. 

This comparative analysis highlights some of the challenges in aligning milk recording 
(MR) results with bulk tank (BT) samples. The discrepancies observed are likely due 
to a combination of factors beyond just milk recording type, yield, and seasonality. 
These potential contributors include:

•	 Multiple Milkings in Bulk Tanks: Milk composition and yield can vary significantly 
from one milking to the next (Quist et al., 2008). Consequently, aligning the results 
of a bulk tank sample, which often contains milk from several milkings, with a single 
milk recording sample is inherently difficult.

•	 Assumption of Gold Standard: While this analysis focuses on identifying factors 
affecting MR results, it is important to acknowledge that we lack insight into the 
factors influencing BT sampling. Bulk tank sampling procedures are generally 
well-documented; however, limited information is available on specific factors 
impacting fat and protein percentages during bulk collections. Given the sensitivity 
of MR samples, particularly in determining fat percentages (Fouz et al., 2009), 
various sources of error may exist during BT collection, potentially affecting the 
consistency of results when comparing BT to MR sample.

•	 Variety of Milking Meters: Irish dairy farmers use a wide variety of milking meters. 
Around 50% of herds use electronic DIY (EDIY) systems, such as Tru-Test meters, 
while the remaining herds rely on various manual meters, including ICAR-approved, 
non-ICAR-approved, jar meters, and others. The frequency of servicing and 
calibration of these meters to both manufacturer and ICAR standards is largely 
unknown and is often left to the discretion of farmers, introducing another layer of 
potential error that may contribute to inconsistency in reporting.

•	 Inconsistent milking machine performance: Milking machine performance 
metrics, such as vacuum level and milk flow rate, have been shown to significantly 
impact overall milking performance (Besier and Bruckmaier, 2016). Air leaks in 
liners or sub optimal liner type can lead to fluctuations in vacuum and flow rates 
and result in under- or over-milking, which may have a considerable impact on a 
given MR sampling (O’Callaghan and Gleeson, 2004).

A follow-up study has been commissioned to investigate the relationship between 
milking machine performance and MR reporting. This study will provide a more 
comprehensive understanding of the factors contributing to MR discrepancies at the 
farm level.

On average, fat and protein percent reported in milk recordings are underestimated 
compared to bulk tank results, with the largest discrepancies observed in fat percent 
reporting. While factors such as recording method, yield, and seasonality influence these 
discrepancies, they do not fully explain them. The underlying issues likely stem from 
the milk recording infrastructure, including milking machine performance, calibration, 
and certification. Additional research is necessary to understand the causes behind 
the misalignment of MR and BT fat and protein percentages.

Discussion

Conclusion
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The methodologies and parameters for estimating daily milk yields in the United States 
were mainly developed from the 1960s through the 1990s. A recent initiative by the 
Council on Dairy Cattle Breeding, USDA-AGIL, and the National DHIA aims to update 
these methods and parameters for estimating daily yields by collecting and analyzing 
milking data from dairy farms. This study, serving as an initial case study, examined 
the factors influencing daily milk yield estimation at a dairy farm in New York State and 
compared the performance of the existing method with a recently proposed one. In 
total, 63,562 milking data were extracted from approximately 2,200 cows milked thrice 
daily in this farm. Data cleaning eliminated incomplete or missing records, retaining 
47,670 entries from 1,869 cows for subsequent analyses. The average partial yields 
in kilograms (milking interval time in hours) of the three milkings were 14.6, 16.5, and 
13.8 (7.88, 8.79, and 7.25), respectively. Analysis of variance revealed significant 
effects of milking interval time and months in milk on proportional daily milk yields. The 
lactation effects on proportional daily yields were significant for the first two milkings 
but not for the third milking. Nevertheless, the relative importance of milking interval 
time and lactations was very low. Omitting these two variables resulted in the Wiggans 
(1986) model. The polynomial-interaction-regression model analysis showed significant 
effects from partial yields and significant interactions between partial yields and milking 
interval times on daily yields. The new model gave more accurate estimates than the 
Wiggans (1986) model. Regarding the relative predictability of the three milkings, the 
2nd milkings, having the longest average milking interval time, gave more accurate 
estimates than the 1st and 3rd milkings. The calculated MCFs in this farm increased 
slightly for the 1st milkings and remained roughly comparable (or slightly decreased) for 
the 2nd and 3rd milkings compared to the Wiggans (1986) assessment. These results 
suggest only minor changes in daily yield correction factors over the past four decades. 

Keywords: Accuracy, dairy cattle, milking interval time, interactions, lactation, test-day 
Presented at the ICAR Anual Conference 2024 in Bled at the Session Session 3: 
Factors Affecting the Accuracy of the Recording Day.

The 1960s witnessed a significant shift in milk testing in the United States. Previously, 
farms followed a rigorous schedule of twice-daily milk tests conducted under supervision 
every month. This system then shifted towards more economical sampling methods 
to reduce the costs associated with supervisory visits by the Dairy Herd Improvement 
Association (DHIA). Test frequencies are often adopted to align with varied herd 
management practices. On a test day, a cow may be milked several times, but not all 
milkings contribute to the recorded yield. One prevalent technique is the morning and 
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evening (AM-PM) method, which alternates between sampling either the morning or 
evening milking throughout the lactation period (Porzio, 1953). Initially, the total daily 
milk yield (DMY) was estimated by doubling the yield of a single milking, assuming 
equal length and rate of milk production across both sessions, each lasting precisely 
12 hours. Yet, this assumption often does not hold. Morning milking intervals tend to 
be longer than afternoon milking intervals. Hence, AM milk yields are usually higher 
than PM milk yields (Puttnam and Gilmore, 1970).

Various statistical approaches have been developed to estimate daily milk yields 
from incomplete milking data (reviewed by Wu et al., 2023a,b). The methodologies 
and parameters for estimating DMY in the United States were primarily developed 
from the 1960s through the 1990s. A recent initiative by the Council on Dairy Cattle 
Breeding, USDA-AGIL, and the National DHIA seeks to update these methods and 
parameters for estimating DMY by collecting and analyzing milking data from dairy 
farms. This study examined the factors influencing DMY estimation at a specific site, 
Farm 1 in New York State, and compared the performance of the existing method with 
a recently proposed one for estimating daily DMY. It represented an initial case study 
amid ongoing or planned data collection at other locations.

We extracted 63,562 milking data from Farm 1, representing thrice-milkings daily for 
around 2,200 Holstein cows. Milkings were collected and weighed at all three milkings 
for 18 weeks, starting May 5 and ending September 1, 2023. After that, three-day 
monthly milking data collections were carried out up to 305 days of milk and beyond. 
Milking times are 4am-12pm (1st milking), 12pm-8pm (2nd milking), and 8pm-4am 
(3d milking). Milk yields and timestamps were extracted from BouMatic parlor software 
(https://boumatic.com/us_en/). Records with incomplete and missing data were 
removed. Milking records with prolonged lactation beyond 305d for up to one more 
month were retained. Records with days in milk greater than 335 days, approximately 
accounted for 0.6% of the milking records, were excluded. After data cleaning, we 
retained 47,670 milking records representing 1,869 cows. The cleaned data represented 
up to nine lactations (Figure 1), with 64.0% from the first two lactations and 97.1% from 
the first five lactations. Milking records from lactation six and beyond, accounting for 
2.9%, were pooled. Around 74.1% of the cleaned milking records were collected before 
156 days in milk, and around 95.5% were collected before 250 days. 

Materials and 
methods

Milking data

Figure 1. Distribution of milking records by lactation.
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Statistical methods

 1 

Two statistical models are defined. Firstly, for the i-th animal, a proportional 

DMY (
𝑥𝑥𝑖𝑖𝑖𝑖𝑖𝑖
𝑦𝑦𝑖𝑖𝑖𝑖𝑖𝑖   is assumed to be a linear function of milking interval time (𝑡𝑡𝑖𝑖𝑖𝑖𝑖𝑖  , 

months in milk (𝑚𝑚𝑗𝑗 , lactations (𝛾𝛾𝑙𝑙 , and a residual term (𝜀𝜀𝑖𝑖𝑖𝑖𝑖𝑖 .  

 
𝑥𝑥𝑖𝑖𝑖𝑖𝑖𝑖
𝑦𝑦𝑖𝑖𝑖𝑖𝑖𝑖

= 𝛼𝛼 + 𝛽𝛽𝑡𝑡𝑖𝑖𝑖𝑖𝑖𝑖 +𝑚𝑚𝑗𝑗 + 𝛾𝛾𝑙𝑙 + 𝜀𝜀𝑖𝑖𝑖𝑖𝑖𝑖 (1  

The above model expands the Wiggans (1986  model by additionally including 
the lactations effects and replacing the linear days in milk effect with a 
categorical variable, months in milk.  

MCF are derived for milking interval classes, each spanning 30 minutes 
while accounting for the average months in milk and lactation effects: 

 𝐹𝐹𝑘𝑘 =
1

𝛼̂𝛼+𝛽̂𝛽𝑡𝑡̅(𝑘𝑘)+𝑚̅𝑚+𝛾̅𝛾   (2  

where 𝑡𝑡̅(𝑘𝑘) is the average milking interval time for the k-th milking interval class, 
and 𝑚̅𝑚 and 𝛾̅𝛾 are weighted averages for estimated months in milk and lactation 
effects, respectively. Omitting these two effects in (1  results in the Wiggans 
(1986  model, with MCF calculated as follows: 

 𝐹𝐹𝑘𝑘 =
1

𝛼̂𝛼+𝛽̂𝛽𝑡𝑡̅(𝑘𝑘)   (3  

Hence, a DMY is estimated as follows: 

 𝑦̂𝑦𝑖𝑖𝑖𝑖𝑖𝑖(𝑘𝑘) = 𝐹𝐹𝑘𝑘𝑥𝑥𝑖𝑖𝑖𝑖𝑖𝑖(𝑘𝑘)   (4  

The second model, which we refer to as polynomial-interaction-regression, 
accounts for the interactions between partial yields and milking interval time, 
both linear and quadratic, as follows:  

𝑦𝑦𝑖𝑖𝑖𝑖𝑖𝑖 = (𝑏𝑏0 + 𝑏𝑏1𝑡𝑡𝑖𝑖𝑖𝑖𝑖𝑖 + 𝑏𝑏2𝑡𝑡𝑖𝑖𝑖𝑖𝑖𝑖2 )𝑥𝑥𝑖𝑖𝑖𝑖𝑖𝑖 +𝑚𝑚𝑗𝑗 + 𝛾𝛾𝑙𝑙 + 𝜖𝜖𝑖𝑖𝑖𝑖𝑖𝑖 

 = 𝑏𝑏0𝑥𝑥𝑖𝑖𝑖𝑖𝑖𝑖 + 𝑏𝑏1(𝑡𝑡𝑖𝑖𝑖𝑖𝑖𝑖𝑥𝑥𝑖𝑖𝑖𝑖𝑖𝑖)+ 𝑏𝑏2(𝑡𝑡𝑖𝑖𝑖𝑖𝑖𝑖2 𝑥𝑥𝑖𝑖𝑖𝑖𝑖𝑖) 

 +𝑚𝑚𝑗𝑗 + 𝛾𝛾𝑙𝑙 + 𝜖𝜖𝑖𝑖𝑖𝑖𝑖𝑖   (5  

MCF are derived pertaining to a specific milking interval time t,  

 𝐹𝐹𝑡𝑡 = 𝑏̂𝑏0 + 𝑏̂𝑏1𝑡𝑡 + 𝑏̂𝑏2𝑡𝑡2  (6  

In the above, the MCF at time t can be viewed as a baseline MCF, 𝐹𝐹0 = 𝑏̂𝑏0 and 
adjusted according to the milking interval time, Δ𝑡𝑡 = 𝑏̂𝑏1𝑡𝑡 + 𝑏̂𝑏2𝑡𝑡2. 

Then, a DMY is estimated as follows:  

 𝑦̂𝑦𝑖𝑖𝑖𝑖𝑖𝑖 = 𝐹𝐹𝑡𝑡=𝑡𝑡𝑖𝑖𝑖𝑖𝑖𝑖𝑥𝑥𝑖𝑖𝑖𝑖𝑖𝑖 + 𝑚̂𝑚𝑗𝑗 + 𝛾̂𝛾𝑙𝑙  (7  

Here, 𝐹𝐹𝑡𝑡=𝑡𝑡𝑖𝑖𝑖𝑖𝑖𝑖 stands for a MCF on specific milking interval time 𝑡𝑡, assigned to 
all animals satisfying 𝑡𝑡𝑖𝑖𝑖𝑖𝑖𝑖 = 𝑡𝑡. 
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The accuracy of estimated DMY was evaluated based on two criteria: correlation and 
R2 accuracy. The former is the correlation between estimated and actual DMY. The 
R2 accuracy is the following: 

where Var(y) is actual phenotypic variance, and MSE stands for mean squared errors.

Analysis of variance (ANOVA) was conducted based on each of the two models 
separately. The importance of predictor variables was assessed by the Lindeman, 
Merenda, and Gold (LMG) metric of R squared (Lindeman et al., 1980). It measures 
the contribution of each predictor to the R-squared value, which is averaged over all 
possible orders of entering the predictors into the regression model. The confidence 
intervals for relative importances were obtained via 1000 bootstrap samples of the 
LMG R2.

Overall, the mean (95% Confidence interval) of test-day milk yields was 45.0 kg 
(28.6 ~ 62.8 kg). Across lactations, the average test-day milk yield increased from 
38.1 kg on the first lactation to 47.2 kg on the second lactation 2, peaked (49.9 kg) on 
lactation 3, and then began to drop on lactation four and beyond, from 49.7 kg (lactation 
4) to 48.8 kg (lactation 6+) (Figure 2; upper).

Average proportional daily yields showed slight variations between lactations, except 
lactation 1 (Figure 2; middle). Possibly, this was because the average milking interval 
times for the three milkings were also consistent across the lactations except the first 
lactation. Thus, it would be reasonable to compute common daily yield correction 
factors for later lactations, but arguable for the first lactation. 

Overall, average proportional daily milk yields varied substantially between the three 
milkings (Figure 2; middle). The first milkings had the largest average proportional daily 
milking yield across lactations (0.35 – 0.38), followed by the third milkings (0.32 – 0.34); 
the second milkings had the least average proportional daily milk yield (0.31). The 
substantial differences in proportional daily yields were attributed to varied milking 
interval times for the three milkings (Figure 3; bottom). The average (95% confidence 
interval) of milking interval time was 8.79 (7.84-9.75) hours, 7.25 (6.39-8.07) hours, 
and 7.88 (7.06-8.81) hours, respectively, for the three milkings. On average, the first 
milking interval time was approximately 1 hour longer than the third and 1.5 hours longer 
than the second. Nevertheless, the average milking interval time varied very slightly 
between lactations, except for lactation one. Approximately the first milking interval 
time was 8.6 hours for lactation 1 and 8.9 hours for lactations 2 through 6+; the second 
milking interval time was 8.1 hours for lactation 1 and 7.8 hours for lactations 2 through 
6+; the third milking interval time was 7.3 hours for lactation 1 and 7.3 hours (Figure 3; 
bottom). In accordance with the lengths of milking interval time, the first milkings had 
the largest average DMY (16.5 kg), followed by the third milkings (14.6 kg); the third 
milkings had the lowest average DMY (13.8 kg).

Accuracy measures

 9 

 

𝑅𝑅2𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 = 𝑉𝑉𝑉𝑉𝑉𝑉(𝑦𝑦)
𝑉𝑉𝑉𝑉𝑉𝑉(𝑦𝑦)+𝑀𝑀𝑀𝑀𝑀𝑀   (8) 
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Analysis of variance based on the proportional daily DMY model (1) showed 
significant effects of milking interval time (Pr <2.20e-16 for all three milkings), months 
in lactation (Pr = 0.0008 for 1st milkings; Pr = 2.52e-10 for 2nd milkings; Pr = 0.0001 
for 3rd milkings), parities (Pr <2.20E-16) on proportional DMY. ANOVA based on the 
PIR model (5) revealed significant effects from partial milk yields (Pr < 2.20e-16), 
months in milk (Pr < 2.20e-16), and parities (Pr < 2.20e-16) on DMY. The results 
also showed significant interactions between partial yields and linear milking interval 
times (Pr < 2.20e-16) on DMY and significant interaction effects between partial yields 
and quadratic milking interval time for 1st milkings (Pr = 9.42e-08) and 3rd milkings 
(Pr = 1.03e-11) but not significant for the 2nd milkings (Pr = 0.1785) on DMY. These 
significant interaction effects justified using PIR models in the present study.

Table 1 presents the relative importance of predictor variables for two models in 
estimating daily milk yields across three different milkings (1st, 2nd, and 3rd). The 
values provided are the means and 95% confidence intervals of the LMG R², which 
measure the proportion of variance explained by each predictor. For the proportional 
DMY Model (1), milking interval time was the most significant predictor, with relatively 
high mean importance values across all milkings (0.157, 0.135, 0.159); months in milk 
had very low importance, indicating it contributes minimally to explaining the variance in 

Figure 2. Trends of changes by lactations in average 
test-day milk yield (upper), average proportional daily 
yields (middle), and average milking interval time 
(bottom).
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DMY (0.002, 0.004, 0.002); Lactations also had a minor contributor, with slightly higher 
values than months in milk but still low (0.040, 0.032, 0.001). The low importance of 
months in milk and lactations agrees with the Wiggans (1986) model, which ignores 
these variables. Nevertheless, the total relative importance sums to around 0.199 for 
the 1st milking, 0.170 for the 2nd milking, and 0.148 for the 3rd milking, suggesting that 
the predictors in this model together explain only a low to modest portion of the variance 
in daily milk yields. There may be other significant variables influencing proportional 
DMY that have not yet been identified.

For the PIR model, partial yields were the most significant predictor, with consistently 
high importance across all milkings (0.285, 0.280, 0.274). The interactions between 
partial yields and linear and quadratic milking interval time also had a major contributor, 
with substantial mean importance values (0.226, 0.244, 0.225) for the interaction with 
a linear milking interval time and also notable mean importance values (0.158, 0.199, 
0.172) for the interaction with quadratic milking interval time. Months in milk showed 
higher importance in the PIR Model (5) compared to the proportional DMY Model 
(1), but still relatively low (0.022, 0.021, 0.020). The relative importance of lactations 
varies more across milkings, with higher values in the 1st and 3rd milkings compared 
to the 2nd (0.129, 0.083, 0.101). The total relative importance sums to 0.820 for the 
1st milking, 0.830 for the 2nd milking, and 0.790 for the 3rd milking, indicating that the 
PIR Model predictors together explain a much larger portion of the variance in daily 
milk yields compared to the proportional DMY model. However, both results are not 
directly comparable because they modeled different quantities. The dependent variable 
in the former model was proportional DMY, whereas it was DMY in the latter model.

 11 

Table 1. Relative importance (mean and 95% of IMG R2) of predictor variables in two models 1 

 

Predictors 1st milking 2nd milking 3rd milking 
Mean Q2.5% Q97.5% Mean Q2.5% Q97.5% Mean Q2.5% Q97.5% 

Model 1 
MIT 0.157 0.145 0.171 0.135 0.121 0.149 0.159 0.146 0.172 
MIM 0.002 0.001 0.004 0.004 0.003 0.007 0.002 0.002 0.005 
LACT 0.040 0.035 0.046 0.032 0.026 0.037 0.001 0.001 0.003 
Sum 0.199   0.170    0.148  

Model 2 
PY 0.285 0.280 0.290 0.280 0.276 0.284 0.274 0.269 0.279 

TAR1 0.226 0.222 0.230 0.244 0.240 0.247 0.225 0.222 0.229 
TAR2 0.158 0.154 0.162 0.199 0.196 0.202 0.172 0.168 0.175 
MIM 0.022 0.020 0.025 0.021 0.019 0.024 0.020 0.018 0.023 

LACT 0.129 0.124 0.133 0.083 0.080 0.086 0.101 0.096 0.106 
SUM 0.82   0.83   0.79   

1 MIT = milking interval time; MIM = months in milk; LACT = lactations; PY = partial yields (1st, 2nd, or 3rd);  
TAR1 = interaction between PY and linear MIT; TAR2 = interaction between PY and qudratic MIT. 
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Table 2 compares the accuracy of estimated daily milking yields using two models, each 
under two scenarios. The scenarios differed based on whether the effects of months 
in milk and lactation were accounted for. GW1 and PIR1 did not include the variables 
for months in milk and lactations, whereas GW2 and PIR2 accounted for their effects. 
The accuracy is measured by the correlation between estimated and actual daily milk 
yields, the R² accuracy, and the K value, which is the ratio of the estimated daily milk 
yields over the variance of actual daily milk yields.

The Wiggans (1986) models, GW1 and GW2, showed roughly similar performance 
with slight differences in correlations, R² accuracies, and K values. Both models tend 
to overestimate the variance (K > 1). The PIR1 and PIR2 models generally had a 
higher correlation and R² accuracies than GW1 and GW2, indicating they provide more 
accurate estimates of daily milk yields than the current method. Compared to the GW 
models, PIR1 had around 1-2% increase in R2 accuracy, and PIR2 had approximately 
4-6% increase in R2 accuracy. However, these two PIR models performed differently 
on the variance of estimated DMY. PIR1 gave an overestimated variance of estimated 
DMY, whereas PIR2 led to a smaller variance of DMY than the actual daily milk yield 
variance. Generally speaking, the estimates from a linear regression tend to have a 
smaller estimate variance than the actual variance because the residuals are excluded. 
However, PIR1 was a model without intercept. When fitting linear regression models, 
the inclusion or exclusion of an intercept has a significant impact on the variance of the 
predicted values. The intercept in a regression model captures the average expected 
value of the dependent variable when all predictor variables are at zero (assuming 
zero is within the range of normal values for these predictors). 

Including an intercept typically reduces the sensitivity of the model to fluctuations in 
the data by adjusting the baseline level of the response. This often leads to smaller 
coefficients for the predictors because the intercept absorbs much of the average 
outcome, reducing the variability that each predictor needs to explain. Hence, the 
variance of the predicted values generally reflects more closely the natural variability 
in the data centered around the mean. 

Without an intercept, each predictor variable must account not only for the variability 
related to its specific influence on the dependent variable but also for its overall mean. 
This often requires larger coefficients, as each predictor must scale more significantly to 
fit the data points. Because the model without an intercept is overly sensitive to changes 
in the predictor variables and tends to have larger coefficients, the range of predicted 

Accuracy of 
estimated daily milk 
yields

Table 2. Accuracy metrics of estimated daily milking yields using two the Wiggans (1986) (GW) 
method and a polynomial-interaction-regression (PIR) model, respectively 1,2.
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Table 2. Accuracy metrics of estimated daily milking yields using two the Wiggans (1986) (GW) 
method and a polynomial-interaction-regression (PIR) model, respectively 1,2. 

 

Methods 
1st milking 2nd milking 3rd milking 

Corr R2 K Corr R2 K Corr R2 K 

Before variance rescaling 
GW1 0.880 0.781 1.237 0.901 0.809 1.253 0.875 0.769 1.285 
GW2 0.879 0.791 1.152 0.902 0.801 1.3207 0.875 0.769 1.283 
PIR1 0.883 0.800 1.205 0.903 0.815 1.2277 0.877 0.777 1.249 

After variance rescaling 
GW1 0.880 0.806 1.000 0.901 0.835 1.000 0.875 0.800 1.000 
GW2 0.879 0.806 1.000 0.902 0.836 1.000 0.875 0.800 1.000 
PIR1 0.883 0.811 1.000 0.903 0.837 1.000 0.877 0.803 1.000 
PIR2 0.906 0.841 1.000 0.909 0.847 1.000 0.889 0.819 1.000 

1 Corr = correlation; R2 = R2 accuracy; K = ratio of estimated versus actual daily milk yield variance. 
2 GW1, PIR1 = Omitting months in milk and lactations; GW2, PIR2 = These models included the effects of 

months in milk and lactations.  
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values can be significantly wider. This amplifies the variance of the predictions because 
the model tries to compensate for the lack of a baseline adjustment by stretching the 
effect of the predictors to cover all data points. Table 3 shows model parameters for 
the polynomial-interaction-regression with (PIR2). Without accounting for the effects 
of months in milk and lactations (PIR1), the regression coefficients for partial yields 
were between 5.19 and 8.36. In contrast, the regression coefficients were substantially 
smaller (2.78 – 5.97) with the PIR2 model when accounting for the effects due to 
months in milk and lactations. 

PIR2 had a higher R2 accuracy than PIR1 because PIR2 accounted for the effects 
of months in milk and lactation. This is often the case when one or more secondary 
variables are not randomized in the experimental design, such that deviates due to 
these differences are not zero. Otherwise, PIR and PIR2 would perform similarly. In 
contrast, GW1 and GW2 performed similarly, which may suggest that simply accounting 
for secondary variables by their averages in the Wiggans (1986) is inefficient. 

It should be noted that, in PIR2, the months in milk effects were expressed as inherently 
related to the overall mean. In other words, though the overall mean was not present 
in the PIR2 model equation, it was presented via the months in milk effects. Therefore, 
PIR2 gave a smaller estimate variance than the actual variance. Variance rescaling 
brought all K values to 1, indicating that the variance of estimated daily milk yields now 
matches the actual yields perfectly. Thus, variance rescaling effectively adjusted the 
variance of estimated yields to match the actual yields, improving the overall accuracy of 
the models except for PIR2. For PIR2, because the estimated daily yield variance was 
smaller than the actual variance and because the months in milk and lactation effects 
were adjusted additively, variance rescaling led to a slight decrease in the accuracy. 

In Table 4, multiplicative correction factors (MCF) for three milkings were derived from 
a historical reference (Wiggans, 1986), and compared to the current results derived 
by two models (GW and PIR) across milking intervals between 5.75 and 10.25 hours. 
For the 1st Milkings, the GW and PIR models consistently show higher MCF values 
than the historical reference across all intervals. For the 2nd and 3rd milkings, MCF 
derived from the GW and PIR models are slightly lower than the reference. These results 
indicate minor changes in MCF over the past decades. The PIR model shows a trend 
towards slightly lower MCF values across all milkings compared to the GW model. The 

Table 4. Comparison of 3X multiplicative correction factors (MCF) obtained for every 30 
minutes based on the present milking dataset and the reference (Ref) MCF for trice-milkings1,2.
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Table 4. Comparison of 3X multiplicative correction factors (MCF) obtained for every 30 
minutes based on the present milking dataset and the reference (Ref) MCF for trice-
milkings1,2. 
 

Milking 
interval 
time, hrs 

1st milking 2nd milking 3rd milking 

Ref. GW PIR Ref. GW PIR Ref. GW PIR 

5.75 3.76 4.11 3.98 3.89 3.74 3.48 3.92 3.94 3.83 
6.25 3.54 3.81 3.73 3.65 3.53 3.34 3.68 3.69 3.60 
6.75 3.34 3.55 3.50 3.45 3.33 3.21 3.47 3.46 3.40 
7.25 3.17 3.32 3.29 3.26 3.16 3.08 3.28 3.26 3.20 
7.75 3.01 3.11 3.11 3.10 3.01 2.96 3.12 3.08 3.03 
8.25 2.87 2.94 2.94 2.95 2.87 2.84 2.96 2.92 2.87 
8.75 2.74 2.78 2.80 2.81 2.74 2.72 2.83 2.78 2.72 
9.25 2.62 2.63 2.67 2.69 2.62 2.60 2.70 2.64 2.60 
9.75 2.51 2.51 2.57 2.57 2.51 2.48 2.59 2.53 2.48 
10.25 2.41 2.39 2.49 2.47 2.42 2.37 2.48 2.42 2.39 

1 GW = MCF according to Wiggans (1986); PIR = polynomial-interaction-regression; both models did not account 

for the effects due to months in milk and lactations.  

2 Reference MCF (Wiggans, 1986): 𝐹𝐹1𝑠𝑠𝑠𝑠 =
1

0.077+0.0329𝑡𝑡; 𝐹𝐹2𝑛𝑛𝑛𝑛 =
1

0.068+0.0329𝑡𝑡; 𝐹𝐹3𝑟𝑟𝑟𝑟 =
1

0.066+0.0329𝑡𝑡 
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average (range) of the reference MCF (Wiggans, 1986) was 3.00 (2.41 – 3.76) for the 
1st milking, 3.08 (2.47 – 3.89) for the 2nd milking, and 3.10 (2.48 – 3.92) for the 3rd 
milking. Based on the recent milking dataset analyzed by the Wiggans (1986) model, 
the average (range) of MCF was 3.11 (2.39 – 3.98) for the 1st milking, 2.99 (2.42 – 3.74) 
for the second milking, and 3.07 (2.39 – 3.83) for the 3rd milking. 

In conclusion, the initial case study demonstrated that modeling proportional DMY 
as a linear function of milking interval time is a valid strategy. The milking interval 
was the primary variable influencing proportional DMY where the effects of months 
in milk and lactations were minor. Still, other major variables that have not yet been 
discovered can influence proportional DMY. The polynomial-interaction-regression 
model provided more accurate yield estimates than the Wiggans (1986) model. The 
new model captures the linear and quadratic interactions between partial yields and 
milking interval times. The study also revealed that the second milking, with the longest 
interval, offered the most precise estimates. The calculated MCFs showed only minor 
deviations over the past four decades despite the significant genetic improvement in 
daily and lactation yields in the past decades. This result suggests that the proportional 
daily yields, reciprocal to MCF, remained relatively stable over the past decades. 
Finally, this study represents an initial case study, and all the conclusions are subject 
to large-scale validation.
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Using the Automatic Milking System (AMS) can increase milk yield and reduce labor, 
but the impact of AMS on the milking behaviour of cows in tropical regions like Taiwan, 
as well as its effect on the quality of farm raw milk, has not been thoroughly explored. 
Free Fatty Acids (FFAs) in milk are considered one of the indicators of milk quality, and 
an increase in FFAs can lead to off-flavors and spoilage in dairy products. This study 
examines the FFA content in individual cow’s milk from different milking systems, and 
investigates the influence of lactation stages and milking frequency on FFAs in raw 
milk. The experiment monitored milk samples collected from the Conventional Milking 
Parlour (CMP) and the AMS from 2021 to 2022, totaling 2,936 and 1,726 samples 
respectively. The FFA content in these samples was measured using Fourier Transform 
Infrared Spectroscopy (FTIR). The results show that the milk from cows using the 
AMS had significantly higher FFAs (1.17 mmol/100g milk fat, P < 0.01) compared 
to those using CMP (0.88 mmol/100g milk fat). The FFA levels in the early stage of 
lactation (0.82 mmol/100g milk fat) were significantly lower (P < 0.01) than in the mid 
(1.10 mmol/100g milk fat) and late stages (1.17 mmol/100g milk fat) of lactation. When 
comparing different milking frequencies, cows milked 2, 3, and more than 4 times a 
day in the AMS had FFAs of 0.89, 1.09, and 1.15 mmol/100g milk fat respectively, 
with the FFAs in milk from cows milked twice a day significantly lower (P < 0.01) 
than those milked 3 times or more. This study indicates that the difference in FFAs 
between AMS and CMP in Taiwanese farms is particularly evident in the early stages 
of lactation, which helps in further investigating the physiological changes in cows 
during this period. The study confirms that the use of AMS in Taiwanese farms affects 
milk quality, including cow-related factors and other management aspects. Although 
the introduction of AMS may initially impact parameters related to milk quality, these 
effects may reduce or disappear as the lactation stage progresses, the cows adapt, 
and milk volume increases. Additionally, farm managers and dairy farmers need to 
pay special attention to the cleaning and maintenance of AMS, as well as the proper 
cooling of raw milk, to maintain high-quality milk.

Keywords: free fatty acids, milk quality, automatic milking system, conventional 
milking parlour. 
Presented at the ICAR Anual Conference 2024 in Bled at the Session Session 3: 
Factors Affecting the Accuracy of the Recording Day 
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Using the Automatic Milking System (AMS) can increase milk yield and reduce labor, 
but the impact of AMS on the milking behaviour of cows in tropical regions like Taiwan, 
as well as its effect on the quality of farm raw milk, has not been thoroughly explored. 
Free Fatty Acids (FFAs) in milk are considered one of the indicators of milk quality, and 
an increase in FFAs can lead to off-flavors and spoilage in dairy products. Therefore, 
it is important to assess the impact of AMS on the FFA content in milk in order to 
understand its effect on milk quality in Taiwanese farms.

In Taiwan, dairy farms have increased their herd size, but labor shortages and aging 
are causing problems. These issues could be resolved by using an automatic milking 
system (AMS). Mechanization and automation will be the future management model 
for dairy farms. This study examines the FFA content in individual cow’s milk from 
different milking systems, and investigates the influence of lactation stages and milking 
frequency on FFAs in raw milk. 

The experiment monitored milk samples collected from the Conventional Milking Parlour 
(CMP) and the AMS from 2021 to 2022, totaling 2,936 and 1,726 samples respectively. 
The FFA content in these samples was measured using Fourier Transform Infrared 
Spectroscopy (FTIR). Recording each day’s milk production, milking equipment used, 
stage of lactation, and milking process. 

Statistical analysis was conducted using a mixed-effects model to assess the impact of 
milking system, lactation stage, and milking frequency on the free fatty acid content in 
milk. The milking system, lactation stage (early, mid, and late), and milking frequency 
(2 times, 3 times, and more than 4 times a day) were considered as fixed effects. 
Individual cows were included as random effects to account for the repeated measures 
on the same cow.

The FFA content in milk samples was analyzed as the response variable, and the 
differences in FFA levels between the milking systems and across lactation stages 
and milking frequencies were evaluated using ANOVA. Post-hoc pairwise comparisons 
were conducted to assess specific differences between the levels of each factor. All 
analyses were performed using the SAS statistical software, and the significance level 
was set at α = 0.05.

The difference between AMS and CMP for FFAs across days in milk is presented 
in Figure 1. Cows milked with AMS produced milk with greater FFAs content across 
lactation. The greatest difference between AMS and CMP was detected in 140 days 
after calving, whereas the smallest differences were observed after 200 days in milk. The 
milk from cows using the AMS had significantly higher FFAs (1.17 mmol/100g milk fat, 
P < 0.01) compared to those using CMP (0.88 mmol/100g milk fat) (Table 1). The FFA 
levels in the early stage of lactation (0.82 mmol/100g milk fat) were significantly lower 
(P < 0.01) than in the mid (1.10 mmol/100g milk fat) and late stages (1.17 mmol/100g 
milk fat) of lactation. 

When the milking frequencies of cows were compared, it was observed that cows 
milked twice a day had lower levels of FFAs in their milk fat (0.89 mmol/100g) compared 
to those milked three times per day (1.09 mmol/100g) and more than four times per 
day (1.15 mmol/100g) in an AMS system. This difference was found to be statistically 
significant with a p-value of less than 0.01. The results of the study indicate that the 
use of an automatic milking system can have a significant impact on the FFA.

Introduction

Material and 
methods 

Results
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In previous study (Marchi et al., 2017), cows milked with AMS produced milk with 
greater FFA content across lactation. The greatest difference between AMS and CMP 
was detected within the first 80 days after calving, whereas the smallest differences 
were observed after 260 days in milk. This result is similar to our study, the smallest 
differences were observed during the late lactation in both experiments.

In this study, FFAs content was greater (+0.29 mmol/100 g milk fat) in milk from 
cows milked in AMS than CMP. The results show a similar trend to previous studies. 
Marchi et al. (2017) indicates the FFAs content in milk in AMS is higher than in CMP 
by 0.16 mmol/100 g milk fat. FFAs are produced through the degradation of milk fat 
into glycerol and FFAs via lipolysis reactions. Cooling and mechanical treatments of 
milk can disrupt the membrane of fat globules, leading to an increase in FFAs levels. 
This increase in FFAs is primarily associated with higher milking frequency or shorter 
milking intervals (Klei et al., 1997; Justesen and Rasmussen, 2000). Wiking et al. 
(2019) indicated that when the milking interval was less than 585 minutes, FFA levels 
increase as the milking interval shortens. More frequent milking leads to lower milk 
yield per milking. This is because the increased frequency of milking results in a higher 

Table 1. Least squares means and P-values of fixed effects in the statistical analysis of free fatty 
acid (FFA) concentration in milk.

 
Table 1. Least squares means and P-values of fixed effects in the statistical analysis of free 
fatty acid (FFA) concentration in milk. 
 

Item Group 
FFA 

(mmol/100g 
milk fat) 

P value 

Milking system AMS 1.17 ± 0.04a <0.0001 
CMP 0.88 ± 0.05b 

Lactation stage Early 0.82 ± 0.05a <0.0001 
Middle 1.10 ± 0.04b 
Late 1.17 ± 0.05b 

Milkings Control 0.97 ± 0.03ab <0.01 
2 0.89 ± 0.04b 
3 1.09 ± 0.05a 
4+ 1.15 ± 0.08a 

Milking system × Lactation stage AMS × Early 1.08 ± 0.07ab <0.05 
AMS × Middle 1.23 ± 0.06a 
AMS × Late 1.20 ± 0.06ab 
CMP × Early 0.55 ± 0.11c 
CMP × Middle 0.97 ± 0.06b 
CMP × Late 1.13 ± 0.06ab 

Lactation stage × Milkings  Early × Control  0.99 ± 0.08bcd <0.05 
Early × 2  0.61 ± 0.09d 
Early × 3  0.77 ± 0.10cd 
Early × 4+ 0.89 ± 0.14bcd 
Middle× Control  0.97 ± 0.05bcd 
Middle× 2  1.03 ± 0.07abc 
Middle× 3  1.26 ± 0.08ab 
Middle× 4+ 1.16 ± 0.12abc 
Late × Control  0.95 ± 0.05bcd 
Late × 2  1.05 ± 0.05abc 
Late × 3  1.26 ± 0.08ab 
Late × 4+ 1.41 ± 0.16a 

a–d Groups that do not share a common superscript letter are significantly different in their FFA levels 
(P<0.05). 
AMS: automatic milking system; CMP: conventional milking parlour. 
Early, Middle, and Late corresponds to 7 to 100 DIM (days in milk), 101 to 200 DIM, and 201 to 305 DIM, 
respectively. The 2, 3, and 4+ represent daily milking frequencies with AMS, while Control refers to twice 
daily milking using CMP. 
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air-to-milk ratio in the pipeline, reducing the stability of milk fat globules (MFG). When 
milk is pumped or agitated, mixing with air occurs, causing MFG rupture upon collision 
with air bubbles. As a result, membrane material and core fat are released into the 
milk plasma when air bubbles collapse or merge. Additionally, low quarter milk yields 
are linked to elevated (FFA) levels (Rasmussen et al., 2006). Additionally, milk from 
cows milked more than twice daily tends to have larger fat globules, which are more 
susceptible to lipolysis compared to smaller fat globules. Wiking et al. (2006) stated 
that the increase in FFA content at higher milking frequencies in AMS is attributed to 
both biological and mechanical factors. However, biological factors may have a greater 
impact, as spontaneous lipolysis is heightened. These findings suggest that the use of 
an automatic milking system, combined with a higher milking frequency, may contribute 
to increased levels of FFAs in milk.

This study suggests that there is a noticeable disparity in free fatty acids between 
automated milking systems and conventional milking parlors in Taiwanese farms, 
especially during the initial phases of lactation. This finding opens up opportunities 
for delving deeper into the physiological transformations occurring in cows during this 
specific period. Furthermore, exploring these differences may provide insights into 
potential improvements or adjustments to enhance milk quality and overall efficiency 
within dairy farming operations.

The use of AMS in Taiwanese farms may have a long-lasting impact on milk quality. 
Certain cow-related factors and management aspects may continue to be affected 
even as cows adapt and milk volume increases. Furthermore, farm managers and 
dairy farmers need to pay special attention to the cleaning and maintenance of AMS, 
as well as the proper cooling of raw milk, to maintain high-quality milk.

Conclusions

Figure 1. Free fatty acid (FFA) levels (mean ± standard error, mmol/100g fat) for automatic milking 
system (AMS, solid line) and conventional milking parlour (CMP, dashed line) over 15 days intervals 
through the entire 305 days of lactation.

 
Figure 1. Free fatty acid (FFA) levels (mean ± standard error, mmol/100g fat) for automatic 

milking system (AMS, solid line) and conventional milking parlour (CMP, dashed line) 
over 15 days intervals through the entire 305 days of lactation. 
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DecisiveDry – Decision support for proper use of 
Selective Dry Cow Therapy while enhancing dairy 

sustainability

J.S. Clay and R.H. Fourdraine
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To boost adoption of Selective Dry Cow Therapy (SDCT) among its dairy producer 
customers, Dairy Records Management Systems in the U.S. introduced a web-based 
software app that can be flexibly applied in herds that are good candidates for this 
management strategy. The decades-long use of Blanket Dry Cow Therapy (BDCT) has 
been effective to control mastitis levels in dairy herds but it contributes substantively to 
the level of antibiotic use and the risk for antibiotic resistant pathogens. DecisiveDry first 
helps by determining whether the herd is a good candidate for SDCT by assessing for 
the recent year: number of measurements of SCC, year average SCC and number of 
testdays that herd average SCC is greater than a level set by the user. Next DecisiveDry 
identifies which of the soon to turn-dry cows may be eligible for SDCT. Cow eligibility is 
assessed using SCC levels of the three most recent testdays plus the number of days 
since the most recent case of clinical mastitis. Of course, it is recommended that all 
cows receive teat sealant. The app provides various forms of lists of cows to turn dry 
and whether each cow is eligible for only teat sealant. Lastly, the app provides financial 
estimates of cost (treated cows) and savings (non-treated cows) of drugs and labor.

Keywords: Clay, mastitis, SDCT, therapy, antibiotics, sustainable. 
Presented at the ICAR Anual Conference 2024 in Bled at the Session Session 5: 
How to Relate on Farm Sustainability and Milk Analysis?

SDCT is not a new concept and is widely used in some European countries. However 
in the United States, SDCT has not gained as much traction and, on many dairy farms, 
dry cow therapies are applied to all cows at dry-off (BDCT). The common perspective 
is that BDCT minimizes mastitis problems with fresh cows and simplifies staff workflow. 
BDCT has been the gold standard to prevent intramammary infections (IMI) because 
it is most effective to methodically treat all quarters of every cow. Also, it is perceived 
that it is easiest for the milking staff to treat all quarters. However, it has been found 
that there is no difference in IMI subsequent to either BDCT or SDCT¹. Additionally, 
SDCT  reduces antimicrobial use by 66%¹ which reduces cost plus is becoming 
increasingly important to consumers.

The DecisiveDry app provides flexible yet methodical guidance to enable producers 
to deploy SDCT in their herd. DecisiveDry first assesses the herd’s DHI herd average 
records to determine SDCT appropriateness and then it assesses DHI records for 
each potential dry cow. By closely following one of the three lists of potential dry cows, 
producers can be assured of consistent and proper application of the guidelines.

Abstract

Introduction
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By convention, application of SDCT has been targeted for herds with annual herd 
average SCC of 250,000 cell/mL or less and must have a minimum of 8 DHI testdays 
with SCC results. Of the 10,000 herds (2.0M cows) serviced by DRMS in 2023, 75% 
managed their herds to result in annual herd average SCC of less than 250,000 based 
on 8+ DHI testdays within the year.

Before including SDCT in a management scheme, a herd manager should also consider 
whether there has been an inordinate number of testdays with herd average SCC 
greater than 250,000. So – were there any spikes of herd average SCC? 

For the 75% of DRMS herds with herd year average SCC less than 250,000 and a 
minimum of 8 SCC testdays, Table 1 displays percent of testdays with testday herd 
average SCC spikes (> 250,000) The shaded area in Table 1 portrays percent of 
herds with high numbers (3 or more) of testday SCC spikes. Clearly, the small herds 
produced a greater percentage of testday SCC spikes (25% for herds with less than 
100 cows) than the larger herds (8% for herds with 1000+ cows). However overall, 
80% (of the previous 75%...) of herds would qualify for SDCT.

Typically within herds that qualify for SDCT, managers will screen cows to turn dry 
using multiple metrics to optimize potential for success with SDCT and minimize 
chances of mastitis in the subsequent lactation. Usual screening is for less than 
150,000‑200,000 cell/ mL on the last testday and an average SCC on the last three 
testdays of less than 200,000. Additionally, a cow may be excluded because of a case 
of clinical mastitis within 90 to 100 days.

Is the herd a good 
candidate for 
SDCT?

Table 1. Percent of DRMS Herds by Herd Size with Year 
Average SCC < 250,000 with Number of Testdays that 
Averaged High SCC (≥ 250,000 cell/mL) 
 

Herd 
 Size 
# Cows 0 1 - 2 3+ 
< 100 39 36 25 
100-299 56 27 16 
300-999 72 18 10 
1000+ 79 13 8 
All 49 31 20 

 

 

 

 

  

Table 2. Percent of DRMS Cows that Qualify for SDCT by Herd Size in Qualifying Herds. 
 

 Herd 

Size # Cows Percent of Herds 
Percent of Cows 

Qualified  for SDCT 
< 100 52 76 
100-299 29 80 
300-999 13 82 
1000+ 6 83 
All  79 

 

 

  

Table 1. Percent of DRMS Herds by Herd Size with Year 
Average SCC < 250,000 with Number of Testdays that 
Averaged High SCC (≥ 250,000 cell/mL).

Table 2. Percent of DRMS Cows that Qualify for SDCT by Herd Size in 
Qualifying Herds.

Is the cow a good 
candidate for 
SDCT?
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After filtering for the herds identified in Table 1 with fewer than 3 testday average 
SCC spikes (80% of the herds with 8 testdays in 2023), the table below depicts the 
percentage of cows that would qualify for SDCT because SCC on the final testday 
prior to dry-off was less than 200,000 and the average SCC for the final three testdays 
was less than 200,000. Seventy-nine percent of cows qualified - and there was little 
difference in percents of qualifying cows by herd size.

In its outreach campaigns for DecisiveDry, DRMS primarily targets producers that 
use its proprietary on-farm Dart herd management software and producers that take 
advantage of DartSync. DartSync is co-hosted software residing both on-farm and on 
DRMS servers. This software backs up the on-farm database while also synchronizing 
with data tables at DRMS. Although most producers send data from on-farm only once 
per day, there is the flexibility to synchronize multiple times daily. This synchronization 
facilitates the readiness of the DecisiveDry app for proper management of eligibility 
for SDCT. Approximately 45% of the cows that are serviced by DRMS are targeted 
by these systems. 

The HerdHQ suite of apps provide an array of services for DRMS clients including 
producers and industry members such as herd consultants. Like all of the apps in 
the HerdHQ suite, although DecisiveDry will function appropriately using data and 
information from herds that do not use Dart or DartSync, it operates most effectively 
for participating herds.

As depicted in Figure 1, the producer will complete entries to enable DecisiveDry to 
assess herd records and make recommendations. The interpretation of most fields 
are apparent but some additional explanations a String # of cows to include: enables 
the producer to subset cows by lot. Many herds set=0 to include all lots.

•	 Data Source: although a Dart producer will most likely choose DartSync, other 
producers will choose to access dry-off advice immediately after testday.

•	 Names of Mastitis Events in Dart: because of flexibility in Dart for naming health 
events, the producer will identify the names associated with cases of clinical mastitis 
events in his herd.

•	 Cows to Dry in Next X Days: enables customization to fit various management 
schemes for frequency of dry-off.

•	 Drug and Labor costs: per cow estimates will facilitate computation of financial 
impacts.

Targeted 
producers

DecisiveDry is 
a component of 
HerdHQ suite of 
apps

Getting started: 
herd and cow 
setup
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As illustrated in Figure 2, assessment results of the herd’s eligibility for SDCT are 
portrayed in either green (OK to use SDCT for cows) or red (BDCT recommended) 
using the above criteria. Additionally, the herd assessment provides counts of the 
numbers of cows in the dry-off cohort to suggest for treatment and no-treatment. Plus, 
the producer’s own estimates of per cow costs are used to predict the cost of treatment 
and the savings for no-treatment of the dry-off cohort.

Figure 1. Input parameter screen for DecisiveDry.

 

 

Figure 1. Input parameter screen for DecisiveDry. 

  

DecisiveDry 
output

 

Figure 2. Output screen for DecisiveDry. 

 

  

Figure 2. Output screen for DecisiveDry.
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•	 The lower portion of the output screen lists the dry-off cohort of cows in index 
order with these additional featuresEligible cows are shaded in green.

•	 Not-eligible cows are shaded in pink and include highlight symbols.

•	 Columns are sortable.

•	 CowID may be clicked to gain access to other information.

•	 Wide and narrow versions are available.

As illustrated in Figure 3, when the producer uses a phone with the narrow version 
of output or sends the CSV file to a phone, all necessary information will be available 
cowside for proper management.

In summary, as U.S. dairy farmers continue to move towards using less antibiotics 
while also focusing on maintaining and improving overall herd health, DecisiveDry is 
an easy-to-use decision support tool. It is customizable to the individual farm situation, 
will speed up the process of sorting through information for many cows, and it can help 
minimize inappropriate or unnecessary antibiotic use. DecisiveDry can lead to greater 
profitability while supporting overall sustainability of the dairy farm.

Kabera F., J.-P. Roy, M. Afifi, S. Godden, H. Stryhn, J. Sanchez, and S. 
Dufour. 2021. Comparing Blanket vs. Selective Dry Cow Treatment Approaches 
for Elimination and Prevention of Intramammary Infections During the Dry Period: A 
Systematic Review and Meta-Analysis. Front. Vet. Sci., 15 June 2021. v. 8.

Cowside 
management

Figure 3. Excel file from DecisiveDry portrayed on phone.

 

 

Figure 3. Excel file from DecisiveDry portrayed on phone. 
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One of the most common indications for the use of antimicrobials in dairy cattle is 
the administration of long-acting antibiotic products for drying off. Antibiotic dry cow 
therapy (ADCT) has proven itself over decades to be an efficient tool to cure existing 
udder infections and to reduce the number of new infections in the following lactation. 
However, from a One Health perspective, the routine use of antibiotics is controversial. 
As the use of antibiotics increases the risk of selecting antimicrobial resistant bacteria, 
the administration of antibiotic dry cow tubes should be restricted to cows with a proven 
infection with known mastitis pathogens or those at an increased risk of a new infection 
during the dry period.

As part of the D4Dairy research project, a cohort study was carried out to investigate 
whether the selective use of ADCT could lead to a reduction in the total antimicrobial 
use, without negatively influencing the udder health of the dairy herd. To determine the 
frequency of udder infections prior to dry-off, as well as the frequency of new infections, 
bacteriological milk cultures were carried out before dry-off and at the beginning of 
the subsequent lactation. 

The results of the bacteriological milk cultures at the time of dry-off collated during 
the D4Dairy field study were used as ‘gold standard’ to develop a practical and 
cost-effective model for an animal-specific decision-making tool for selective ADCT. 
Therefore, the diagnostic results were combined with the data collected via the national 
milk monitoring scheme and the Austrian health monitoring program. Two statistical 
model approaches (Generalized Estimating Equations (GEE), Random Forest) were 
applied to predict the diagnostic result on animal level. The agreement between the 
predictions and the observed result of the bacteriological milk culture was evaluated for 
those two models, as well as for the selective ADCT recommendations carried out on 
farm in the D4Dairy field study. The best predictive performance was obtained using a 
random forest model. However, the test set was rather small. To validate the results, 
a larger amount of data from routine recordings from the Austrian milk performance 
recording system was used to train and test the random forest.

Selective dry cow therapy (SDCT) based on herd- and cow-specific somatic cell counts 
have the potential to reduce antibiotic dry-cow treatments without increasing the risk 
of deterioration of the udder health status of a herd. With a statistical prediction model 
like random forest, the use of antibiotics could be reduced even further.

Abstract
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The use of antibiotics at the time of drying off dairy cows has been an integral part of 
udder health programs for decades. Antibiotic dry cow therapy (ADCT) is still a standard 
procedure of good agricultural practice on dairy farms today.

Concerns exist that uncritical use of antibiotics in livestock will reduce the effectiveness 
of antibiotics in humans due to the emergence of multi-resistant bacteria, which are 
increasingly being detected in humans and in the environment. The use of antibiotics 
as a management measure when drying off dairy cows is therefore subject to growing 
criticism.

The pattern of pathogens causing mastitis in dairy cattle has changed in recent years. 
Staphylococcus aureus has replaced Streptococcus agalactiae as the most common 
problem species. Antibiotic dry cow treatment can be effective in Staphylococcus aureus 
infected cows, but the cure rates vary considerably (Barkema et al., 2006). Udder 
infections with Enterobacteriales and Streptococcus uberis occur predominantly during 
lactation and require treatments in the acute phase of the disease (Pinzon-Sanchez 
and Ruegg, 2011). Antibiotic dry cow treatment should be limited to infected cows 
and to cows at high infection risk. A systematic use of antibiotics for all cows for dry 
cow treatment (blanket dry cow treatment, BDCT) is rarely justified. The selective use 
of antibiotics for drying off (selective dry cow treatment, SDCT) is necessary to avoid 
losses in milk production due to udder diseases (Cameron et al. 2015, Niemi et al. 2022).

SDCT is based on the selection of infected cows and cows whose udder health is at 
risk, with the aim of ensuring the highest possible udder health while at the same time 
keeping the use of antibiotics as low as possible. Various herd-related and cow-related 
parameters are used for this selection. In addition to high sensitivity and specificity of 
the selection criteria used for SDCT, the selection methods must also be practical and 
financially affordable (McCubbin et al. 2022). The basic requirements for successfully 
implementing an SDCT concept are, in addition to a low bulk milk somatic cell count, 
a low prevalence of infections with udder-associated mastitis pathogens (Cameron et 
al. 2014), a low incidence of clinical mastitis, good hygiene management at the time 
of drying off, as well as the ongoing monitoring of the udder health status of the herd 
(Kabera et al. 2020, Santman-Berends, I. M. G. A. et al. 2020, Rowe et al. 2020a).

The aim of the study at hand was to validate an existing expert-knowledge-based 
method for SDCT (Biggs et al. 2016, Bradley et al. 2015, Lipkens et al. 2019) and to 
develop a data-based method to routinely identify animals with a high risk of developing 
an udder disease at the time of drying-off, for which ADCT is then recommended. A 
good validated dry-off strategy could thus minimize the antibiotic use while maintaining 
udder health.

As part of the D4Dairy research project “Measures to reduce antibiotic resistance”, 
a cohort study was carried out to investigate whether the targeted use of antibiotics 
for dry-off treatment could reduce overall antibiotic consumption without negatively 
affecting the udder health of dairy herds. The field study was set up in 31 dairy herds 
which were not randomly selected (Table 1). 16 herds (case herds) got monthly 
recommendations for each individual cow to use or not to use an antimicrobial dry cow 
treatment based on the calculated weighted somatic cell count of the total herd, the 

Introduction

Material and 
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individual cow somatic cell count of the last two milk recordings before drying off, the 
lactation number (primiparous, multiparous) (Biggs et al. 2016). In 15 herds (control 
herds) the management of dry-off treatments was carried out as usual (blanket DCT, 
various SDCT methods). Bacteriological culture of milk samples was conducted before 
dry-off, after calving and for every mastitis case. Data on antimicrobial use with respect 
to dry-off treatment were collated. Using this data the dry-off strategies were assessed 
using cure rate, new infection rate and antimicrobial use as outcome parameters.

For the evaluation of the amount of antibiotics, which was used for antimicrobial dry 
cow treatment, the dosed based indicator TD (treatment days; Sanders et al. 2020) 
for the use of dry cow tubes was applied. The number of unit doses of antibiotics 
licensed for dry-cow therapy which were sold to the farmers during the study period 
was summed up and this figure was divided by the sum of days the cows were kept 
in the study herds during the study period and multiplied by 365. This number of 
treatment days for ADCT per cow per year was corrected by the calving interval and 
the replacement rate of heifers of the corresponding herd (Formula 1).

1 
 

Table 1. Herds characteristics of cohort study participants. 
 

  Case Control 

Number of herds  16 15 

Number of cows  1206 1056 

Type of farming activity 
Full-time 15 13 

Part-Time 1 2 

Husbandry system 
Freestall 16 14 

Tie-stall 0 1 

Predominant breed  Simmental Simmental, Holstein 

Milking technique 

AMS 3 3 

Heringbone 6 7 

Side-by-side 5 3 

Antibiotic dry cow treatment 

Blanket 0 7 

Selective 15 7 

Case-by-case basis 1 1 

 
  

Table 1. Herds characteristics of cohort study participants.

2 
 

 

 
 
  

Formula 1: #TD365DCT (number of treatment days per cow per year for ADCT) = number 
of unit doses (UD) per udder given to any cow of a population within 1 year 
(1 UD = 4 injectors of an antibiotic licensed for intramammary use in dry-cow therapy).

Antimicrobial use
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A data-based, cow-specific dry-off recommendation should aim to provide antibiotics at 
dry-off only for cows that are infected with a mastitis pathogen or that are at increased 
risk of a new infection. The data collected in the cohort study was used to statistically 
model the result of bacteriological milk testing at the time of drying off, however only 
major mastitis pathogens were considered.

The binary diagnostic result (major / negative) was used as target variable for two 
statistical approaches. On the one hand a GEE (Generalized Estimating Equations) 
model with a logistic link function and an exchangeable covariance structure, accounting 
for similarities among cows and farms, was applied to a training data set (85 % of the 
observations), on the other hand a random forest model (Breiman, 2001) was trained, 
and both methods were validated on the same test set. Recordings from the national 
milk monitoring scheme and the Austrian health monitoring program (e.g.  somatic 
cell count of the last three milk records before the date of the diagnostic test, mastitis 
diagnosis in the current lactation, somatic cell count at herd level) were used as 
explanatory (feature) variables in the two models.

For the random forest feature selection is implicitly included in building the different 
trees. A stepwise forward model selection (Hastie et al., 2001) procedure was used to 
select an optimal GEE model. Each feature was added to the model and the variable 
with the lowest Quasi-Likelihood Information Criterion (Pan, 2001) was selected in 
each step.  

Predictions from those two models were compared with the observed diagnostic 
results for a test set that contained 15 % of the observations. Predictive performance 
was assessed by different performance measures: accuracy, sensitivity, specificity, 
and f1-score.

To compare the two data-based approaches with the method based on expert‑knowledge 
(Biggs et al., 2016), the D4Dairy field study recommendations were evaluated for the 
same test set and the same performance measures were calculated. The data was 
split to ensure that any given animal was only observed in one of the two data subsets.

All statistical analysis were performed using the statistical software R, version 4.3.2 
(R Core Team, 2023) and the packages geepack (Hojsgaard et al., 2006), ranger 
(Wright and Ziegler, 2017) and caret (Kuhn, 2008).

To validate the data-based decision approach, an extended data set, using 
bacteriological test data, milk performance data and herd health data from the Austrian 
cattle data network including 18,810 observations was provided.

Again, the data was split into a training set (85 %) and a test set (15 %), ensuring that 
an individual animal could only occur in one subset, and a random forest was tuned 
on the training set. Predictions from the random forest and the SDCT method (Biggs et 
al., 2016) were evaluated on the same test set using the same performance measures 
(accuracy, sensitivity, specificity and f1-score) as for the D4Dairy field study.

Statistical modelling 
(data-based selection 
method)

Extended data set



199

ICAR Technical Series no. 28

Obritzhauser et al.

Of 4,241 quarter milk samples taken before drying off 3,741 (88.2%) tested negative 
in the microbiological culture. In 240 (5.7%) of quarter milk samples a major pathogen 
(Staphylococcus aureus, Streptocooci, Enterococci, Enterobacteria, Trueperella) was 
detected. Interestingly Streptococci were the most common pathogen found in these 
samples, followed by Enterobacteria. The within-herd percentage of tested cows 
infected with a major pathogen before drying off varied between 0% and 57%. 

The SCC at the last milk recording prior to calving in cows, which were infected with 
a major pathogen was - as expected – significantly higher than the SCC in cows, 
which were negative (not infected) in the bacteriological culture, but there was a not 
negligible overlap in individual cow somatic cell count data of major and not infected 
(negative) cows (Figure 1). 

For 694 lactations the infection status before drying off (and within 100 days before 
the day of calving) and within 100 days after calving was evaluated. There were 
no significant differences between the groups of cows which were treated with an 
antibiotic at drying off and cows, which were not treated with an antimicrobial drying-
off product regarding new infections after calving and persistent infections. Due to 
bacteriological testing of all cows without consideration of the udder health status, there 
were significantly more cows with no infection in the group, which were not treated with 
an antibiotic as well as significantly more cured cows in the ADCT-group (Table 2).

No significant differences between herds which received an individual cow 
recommendation for DCT (case herds) and herds which treated cows at drying off as 
usual (control herds) for any infection status could be proved. Significantly more cows 
were cured in the groups treated with an antibiotic (ADCT group) regardless of whether 
case- or control-herds, which is a clear indication for the effectiveness of antimicrobial 
dry cow therapy (Table 3).

Results

Cohort study: Cure, 
new infections

Figure 1. Individual cow somatic cell count (ICSCC) at the last milk recording prior to calving and status of 
intramammary infection (infected with a major pathogen = MAJOR or not infected = NEGATIVE). 
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Figure 1. Individual cow somatic cell count (ICSCC) at the last milk recording prior to calving and status of 
intramammary infection (infected with a major pathogen = MAJOR or not infected = NEGATIVE).  
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The antimicrobial use for ADCT was higher in control herds compared to case herds 
(mean #TD365DCT = 0,783 and 0,585 respectively). The difference of the means was 
significant (t-Test (mean) p = 0.043), but the medians were not (Mood´s Median‑Test 
(median) p = 0.134). The most likely reasons for this „weak“ association are the 
relatively small number of study herds and the fact, that some kind of „selective“ dry 
cow treatment was implemented in most control herds as well.

Performance measures were evaluated for the GEE, the random forest and the applied 
recommendation (Biggs et al., 2016) on a test set containing 121 observations, of which 
23 had a major pathogen test result in the bacteriological milk culture (Table 4). The 
GEE had the highest sensitivity, the random forest achieved the highest accuracy, 
specificity and f1-score. As data was imbalanced regarding the two outcome categories 
(major /negative) the f1-score provides a more reliable performance measure, especially 
compared with the accuracy. 

4 
 

Table 2. Evaluation of the drying-off strategy: cure rates, new infection rates. 
 

  Dry cow therapy 
Status of infection Total ADCT no ADCT 
No infection 404 58% 215 50% 189* 73% 
New infection 89 13% 47 11% 42 16% 
Cure 171 25% 146* 34% 25 10% 
Persistently infected 30 4% 26 6% 4 2% 

* significant Pearson´s Chi-squared test 
 
  

Table 2. Evaluation of the drying-off strategy: cure rates, new infection rates.

Table 3. Evaluation of the drying-off strategy in case �herds (individual cow recommendation for 
DCT) and control herds (DCT as usual): cure rates, new infection rates.
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Table 3. Evaluation of the drying-off strategy in case herds (individual cow recommendation for DCT) and 
control herds (DCT as usual): cure rates, new infection rates. 
 

  Case herds Control herds 
Status of infection Total ADCT No ADCT ADCT No ADCT 
No infection 404 58% 80 47% 107 75% 135 51% 82 70% 
New infection 89 13% 22 13% 24 17% 25 9% 18 15% 
Cure 171 25% 58* 34% 10 7% 88* 33% 15 13% 
Persistently infected 30 4% 10 6% 2 1% 16 6% 2 2% 

* significant Pearson´s Chi-squared test. 
 
  

Cohort study: 
Antimicrobial use for 
dry-cow treatment 
(ADCT)

Data-based selection 
method
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Table 4. Comparison of predictions for a positive result of bacteriological milk tests before drying-off for the 
D4Dairy data set. 
 

 Recommended ADCT                
(Biggs et al. 2016) 

Generalized 
Estimating 
Equations* 

Random 
Forest 

Accuracy 0.752 0.719 0.876 
Sensitivity 0.652 0.739 0.565 
Specificity 0.776 0.714 0.949 
F1-score 0.500 0.500 0.634 

* A cut-off value of 0.19 was used to classify the odds predicted by the GEE model into 
positive bacteriological milk cultures or negative tests. This was determined using an 
ROC analysis. 
 
  

Table 4. Comparison of predictions for a positive result of bacteriological 
milk tests before drying-off for the D4Dairy data set.
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The extended data set contained 59  % negative and 41  % major findings of the 
bacteriological milk cultures. The test set consisted of 2,838 observations (1,167 with 
major finding). Performance measures were evaluated for the SDCT method (Biggs 
et al, 2016) and the random forest model (Table 5). Due to the superior predictive 
performance of random forest, the GEE model predictions for the extended data set 
were not included.

Extended data set

Table 5. Comparison of predictions for a positive result of 
bacteriological milk tests before drying-off for the extended 
data set.
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Table 5. Comparison of predictions for a positive result of bacteriological milk tests before drying-off for the 
extended data set. 
 

 
Recommended ADCT                

(Biggs et al. 2016) 
Random 
Forest 

Accuracy 0.645 0.700 
Sensitivity 0.593 0.519 
Specificity 0.681 0.827 
F1-score 0.579 0.588 

 

Udder infections can heal during the dry period. Cure was more common in cows 
that were treated with an antibiotic at drying-off than in untreated cows, which is in 
accordance with other authors (Halasa et al. 2009a, Halasa et al. 2009b). 

The selection of cows for ADCT did not lead to more new infections compared to herds 
that got no recommendation for SDCT. No significant difference in new infections could 
be proved between the group of cows that received ADCT and the group that did not 
as well as between case- and control-herds. 

The detection of udder infections before drying-off using bacteriological milk testing 
offers a higher level of reliability for selecting cows for ADCT than indirect selection 
methods (Rowe et al. 2021). However, selection based on bacteriological milk tests 
involves significantly more effort, time, materials and costs (Rowe et al. 2021, Rowe 
et al. 2020b) than selecting cows based on individual milk cell counts.

The diagnosis of udder infections prior to dry-off by bacteriological milk culture provides 
greater diagnostic certainty than indirect methods to select cows for ADCT based on 
individual somatic cell counts (SCC), but is associated with significantly higher levels 
of labour, time, materials, and overall costs.

When setting a somatic cell count threshold for ADCT, it must be noted that with lower 
limits more cows that are not infected are treated with an antibiotic (Scherpenzeel, 
C.G.M. et al. 2016). In our study different thresholds were used for first-lactating 
cows (lower threshold value) and for cows in further lactations (higher threshold 
value) (McCubbin et al. 2022, McDougall et al. 2021). Additionally different thresholds 
depending on the calculated weighted somatic cell count of the total herd were used 
(Biggs et al., 2016) to take the increasing risk of new infections due to a high prevalence 
of chronic udder infections into account. However, the comparison of the prediction 
models demonstrates, that the selection for ADCT based on herd-, cow- and lactation-
specific cell count thresholds alone recommends the use of antibiotics more often than 
is actually necessary.

The relationship between udder infections, the results of milk performance testing, the 
lactation age of the cows, and udder health indicators of a herd is complex and could 

Discussion
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not be well explained with a GEE model because no interactions between individual 
factors as well as non-linear combinations of the features were taken into account 
in a first step.  With a statistical prediction model such as random forest, an even 
more precise selection of cows for ADCT could be made, but the data set used was 
rather small. Model comparisons are more reliable when a broader test data set can 
be used. Therefore, the random forest model was trained with an extended data set, 
using bacteriological test data, milk performance data and herd health data from the 
Austrian cattle data network.

The extended data set resulted mostly from routine recordings without a project setting 
on the farm. Consequently, in most cases bacteriological milk tests were run only in 
suspicious cases. Therefore, the results of the bacteriological milk tests were more 
balanced than in the D4Dairy observations, where each cow had to be examined by 
bacteriological milk tests. Differences in accuracy and f1-score were smaller for this 
data set, however they still were better for the random forest. Sensitivity was slightly 
better for the applied SDCT method, whereas the specificity was clearly higher for the 
random forest approach. This underlines the conclusion that ADCT was recommended 
more frequently for the applied SDCT method (Biggs et al., 2016), than a bacteriological 
milk test would have implied. Random forest results would have recommended less 
antibiotic use. However, due to the marginally lower sensitivity, a few more infections 
would have been missed compared to the SDCT method (Rowe et al. 2021).

All presented methods are based on herd- and cow-specific parameters like somatic cell 
count and lactation period, whereas the random forest considers much more variables 
up to three time points before time of drying-off. Consequently, it is possible to get more 
differentiated recommendations by using the random forest model.

In farms that do not use microbiological milk testing on a regular basis before drying 
off, the individual somatic cell counts of the last milk recordings before dry-off and 
the lactation number (first-lactating cows, cows in subsequent lactations) are the key 
decision-making parameters for the selection of cows for ADCT. The use of antibiotics 
for drying off can be reduced using a SDCT method based on the weighted somatic 
cell count of the herd, the cell counts of the individual cows before drying off and the 
lactation age. The SDCT procedure used in this study did not worsen udder health. 
With a statistical prediction model like random forest, the use of antibiotics could be 
reduced even further. The results of this study can be used for the development of a 
dry cow treatment decision tool that could be integrated into a dairy herd management 
software. This tool is intended to support farmers and veterinarians in the widespread 
implementation of SDCT procedures.
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The automatic milking system (AMS) is a new type of equipment for the domestic 
dairy industry in Taiwan. We introduced our first AMS in 2019, and so far a total of 
25 AMS are in use. 9 farms used Lely Astronaut (Lely, Rotterdam, Netherlands) and 
7 farms used DeLaval VMS (DeLaval, Tumba, Sweden). The milking equipment design 
and routine procedure may differ depending on the brand of AMS. Among them, the 
most well-known part is that the robot arms are used in industries with hydraulic drive 
(DeLaval VMS) or designed for animal milking with pneumatic drive (Lely Astronaut). On 
the other hand, the teats were individually cleaned, stimulated, and dried by cleaning 
teat cups with warm air (DeLaval VMS) or cleaned and stimulated by rotating brushes 
(Lely Astronaut). In this study, the bulk tank milk total bacterial counts (BMTBC) and 
somatic cell counts (BMSCC) records were collected from 3 dairy farms that have 
used AMS for over 3 years and have become stable in system operation and feeding 
management for each brand in 2023. The two brands were anonymously represented 
by brand A and brand B. Differences regarding these milk quality parameters were 
contrasted using a t-test. The results showed that BMTBC in brand B was higher 
than in brand A, with a highly significant difference (13.47 ± 1.39 × 103 cfu mL-1 v.s. 
27.06 ± 3.06 × 103 cfu mL-1, P < 0.001). The difference in BMSCC was also significant 
between brand A and brand B (171.40 ± 7.14 × 103 cells ml-1 v.s. 202.90 ± 9.65 × 103 
cells ml-1, P < 0.05). Significant differences exist among the domestic dairy industry 
using different brands of AMS in BMTBC and BMSCC. However, the quality of raw milk 
still complies with the Class A regulations on the standards of purchasing, acceptance, 
and pricing of raw milk. Preliminary speculation indicates that BMTBC and BMSCC are 
affected not only by different brands of AMS but also by different feeding management 
models of dairy farms. The records were collected only from 6 dairy farms. Therefore, 
it is expected that more dairy farms will be able to use AMS in the future and use them 
smoothly to provide more information for reference and stabilize the development of 
the domestic dairy industry in Taiwan.

Keywords: automatic milking system, bacterial counts, somatic cell counts, milk 
quality, dairy farm. 
Presented at the ICAR Anual Conference 2024 in Bled at the Session 5: How to 
Relate on Farm Sustainability and Milk Analysis?
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Automatic milking systems (AMS) are one of the most important technological changes 
in the domestic dairy industry in Taiwan. AMS can be considered not only as a substitute 
for milking parlors but also as a new approach to managing dairy farms (Pezzuolo et 
al., 2017). Today, AMS represents a growing reality due to lobbying for labor issues, 
rising costs, difficulty finding well-trained workers, and difficulty keeping people on 
farms (Simões Filho et al., 2020). 

AMS manufacturers estimated that by 2020, approximately 50,000 units had been 
adopted worldwide (Simões Filho et al., 2020), with the initial introduction of commercial 
AMS in dairy farms occurring in the Netherlands in the early 1990s (Jacobs et al., 
2012). The majority of these units (90%) were concentrated in Europe, with smaller 
percentages in Canada (9%) and other countries (1%) (de Koning, 2010). We introduced 
our first AMS in 2019, and so far a total of 25 AMS are in use, divided into 2 brands. 
9 farms used Lely Astronaut (Lely, Rotterdam, Netherlands) and 7 farms used DeLaval 
VMS (DeLaval, Tumba, Sweden). 

The milking equipment design, routine procedure and animal-flow models may differ 
depending on the brand of AMS. Among them, the most well-known part is that the 
robot arms are used in industries with hydraulic drive (DeLaval VMS) or designed for 
animal milking with pneumatic drive (Lely Astronaut). On the other hand, the teats were 
individually cleaned, stimulated, and dried by cleaning teat cups with warm air (DeLaval 
VMS) or cleaned and stimulated by rotating brushes (Lely Astronaut) (Castro et al., 
2018). The flow systems were classified into two categories: guided flow, where dairy 
cows must pass through the permission gate. If cows have milking permission, they 
are directed to the milking waiting room; if not, they go to the resting area (DeLaval 
VMS). Alternatively, there is free flow, where dairy cows have unrestricted access to 
the milking station, resting area, and feeding area (Lely Astronaut).

This study aimed to investigate the impact of various brands of automatic milking 
systems on bulk tank milk bacterial and somatic cell counts in dairy farms in Taiwan.

This study collected the bulk tank milk total bacterial counts (BMTBC) and somatic cell 
counts (BMSCC) records from the commercial dairy factory for dairy farmer pricing 
payments. Data were obtained from 6 dairy farms (3 Lely Astronaut and 3 DeLaval 
VMS) in Taiwan once a month from January to December 2023. These dairy farms 
have used AMS for over three years and have become stable in system operation and 
feeding management. The two brands were anonymously represented by brand A and 
brand B. These farms’ primary breed was Holstein, and they used the free-stall barn 
systems. Each farm fed a different partial mixed ration twice a day, mainly composed of 
corn silage, alfalfa hay, and concentrate. AMS dispensers provided different amounts of 
commercial concentrates or feedstuffs during milking time depending on milk production, 
dry matter intake and days in milk.

All data were processed using GraphPad Prism version 6.0. Values of milk quality 
parameters were used without any transformation: BMTBC in cfu mL-1; BMSCC 
in cells ml-1. The difference regarding quality parameters between the two brands 
(Lely Astronaut and DeLaval VMS) was analyzed for statistical significance using an 
unpaired Student’s t-test (two-tailed). P values of less than 0.05 (* P < 0.05) were used 
as the level of statistical significance, and P values of less than 0.01 (** P < 0.01) were 
indicated highly of statistical significance.

Material and 
methods 

Experimental design 
and sample collection

Statistical analyses

Introduction

https://www.sciencedirect.com/science/article/pii/S074301672100125X#bbib123
https://www.sciencedirect.com/science/article/pii/S074301672100125X#bbib123
https://www.sciencedirect.com/science/article/pii/S074301672100125X#bbib123
https://www.sciencedirect.com/science/article/pii/S074301672100125X#bbib123
https://www.sciencedirect.com/science/article/pii/S074301672100125X#bbib123
https://www.sciencedirect.com/science/article/pii/S074301672100125X#bbib123
https://www.sciencedirect.com/science/article/pii/S0022030223004964#bbib13
https://www.sciencedirect.com/science/article/pii/S0022030223004964#bbib13
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Table 1 showed that throughout the whole period studied, the mean values 
of brand B were greater for BMTBC (27.06± 3.06 × 103 cfu mL-1) and BMSCC 
(202.90  ±  9.65 × 103  cells  ml-1) than brand A (13.47 ± 1.39 × 103 cfu mL-1 and 
171.40±7.14 × 103 cells ml‑1), moreover, it could be observed from figure 1 that brand 
A had a highly significant difference in the comparison of BMTBC. From another 
perspective, Table 2 showed the monthly average of BMTBC and BMSCC from different 
brands, also represented by a bar chart (Figure 2), it could be found that compared to 
brand A, the BMTBC of brand B had more significant fluctuations in different months, 
but in BMSCC, it is relatively stable like brand A. Therefore, it is estimated that there 
may be other factors affecting the quality of raw milk besides brand differences.

We investigated the application of AMS in six dairy farms and identified several factors 
influencing the experiment’s results. These factors include the number of milking cows, 
the capacity of each AMS, milk yield, and milking frequency (Table 3). The number of 
milking cows and the capacity of each AMS directly impact the need for comprehensive 
care strategies and monitoring. As the number of milking cows or the capacity of each 
AMS increases, so does the demand for attentive management. Additionally, higher 
milk production requires more energy input. Increasing milking frequency helps alleviate 
pressure on cows’ udders and decreases somatic cell and bacteria counts in raw milk.

Significant differences exist among domestic dairy farmers who use different brands 
of AMS in BMTBC and BMSCC. However, the quality of raw milk still complies with 
the Class A regulations on the standards of purchasing, acceptance, and pricing of 
raw milk. Preliminary speculation indicates that BMTBC and BMSCC are affected not 
only by different brands of AMS but also by different feeding management models of 
dairy farms.

Our research has uncovered a crucial issue: the number of milking cows, milk yield, 
milking frequency, and milk discard strategy were different between farms. However, 
the information provided by different AMS brands varies, leading to diverse decisions 
by dairy farmers regarding the milking process and discarding. This discrepancy can 
affect the BMTBC and BMSCC values of bulk tank milk. We understand how the 
technology works, and its operational procedures can assist farmers and technicians 
in making decisions about adopting new technology. In the future, we will continue to 
collect data on AMS and integrate the differences in strategies among different brands 
to find strategies suitable for Taiwan to maintain the high quality of AMS milk.

Results and 
discussion

Table 1. The average of bulk milk total bacterial counts (BMTBC) and somatic cell 
counts (BMSCC) from brand A (n=3) and brand B (n=3) in 2023.

 

 
 
 
Table 1. The average of bulk milk total bacterial counts (BMTBC) and somatic cell counts (BMSCC) from 
brand A (n=3) and brand B (n=3) in 2023. 
 

Milk quality parameters 
Brand1 

P-value 
A (n=36) B (n=36) 

BMTBC (103 cfu mL-1) 13.47 ± 1.39b 27.06 ± 3.06a <0.01 
BMSCC (103 cells ml-1) 171.40 ± 7.14b 202.90 ± 9.65a <0.05 

1The data were shown as mean ± SE. 
a,b Within the same row, values with different superscripts are significantly different (P < 0.05). 
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Figure 1. The average of bulk milk total bacterial counts (BMTBC) and somatic cell counts (BMSCC) from 
brand A (n=3) and brand B (n=3) in 2023.
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Table 2. The monthly average of bulk milk total 
bacterial counts (BMTBC) and somatic cell counts 
(BMSCC) from brand A (n=3) and brand B (n=3) in 
2023.

 

Table 2. The monthly average of bulk milk total bacterial counts (BMTBC) and somatic cell counts (BMSCC) 
from brand A (n=3) and brand B (n=3) in 2023. 
 

Bulk milk total bacterial counts (BMTBC) 
Brand A (n=3) B (n=3) 
month Mean SE Mean SE 

1 9.54 1.30 44.74 27.34 
2 15.62 5.87 33.04 17.31 
3 11.37 2.36 20.37 4.09 
4 12.26 2.94 25.20 5.22 
5 11.25 5.12 49.00 20.64 
6 14.25 7.58 29.32 12.57 
7 13.07 5.72 21.54 3.13 
8 20.23 10.79 18.36 2.50 
9 15.09 3.27 25.14 4.51 

10 14.10 4.68 23.36 3.01 
11 7.92 2.06 17.81 3.45 
12 16.90 4.62 22.79 10.85 
Bulk milk somatic cell counts (BMSCC) 

Brand A (n=3) B (n=3) 
month Mean SE Mean SE 

1 170.83 7.51 158.18 34.58 
2 152.47 24.72 182.22 46.44 
3 145.42 27.06 184.99 38.95 
4 138.99 13.43 189.55 39.46 
5 158.02 24.57 202.25 53.40 
6 194.73 37.92 247.74 71.74 
7 227.33 25.90 215.74 20.32 
8 221.91 11.70 214.18 31.30 
9 200.34 13.07 225.71 16.39 

10 166.03 3.02 210.28 7.10 
11 143.79 1.95 202.65 9.19 
12 136.53 20.85 186.54 18.38 
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Figure 2. The monthly average of bulk milk total bacterial counts (BMTBC) and somatic cell counts 
(BMSCC) from brand A (n=3) and brand B (n=3) in 2023

 

 

Figure 2. The monthly average of bulk milk total bacterial counts (BMTBC) and somatic cell 
counts (BMSCC) from brand A (n=3) and brand B (n=3) in 2023. 
 
 
 
  

  

 

 
Table 3. The average number of milking cows, number of AMS, cows per AMS, milk yield per cow per day, 
and milkings per cow per day in six dairy farms in 2023. 
 

 

Experiment 
farm 

Number of 
milking 

cows (no.) 

Number of 
AMS (no.) 

Cows per 
AMS (no.) 

Milk yield 
per cow per 

day (kg) 

Milkings per 
cow per day 

(no.) 
A1 96 2 48 37.2 3.10 
A2 76 2 38 34.3 2.90 
A3 120 2 60 33.4 2.70 
B1 220 4 55 31.0 2.74 
B2 120 2 60 33.5 2.49 
B3 48 1 48 37.3 2.25 

Table 3. The average number of milking cows, number of AMS, cows per AMS, milk yield per cow per day, 
and milkings per cow per day in six dairy farms in 2023.

The information provided by different AMS brands varies, leading to diverse decisions 
by dairy farmers regarding the milking process and discarding. This discrepancy can 
affect the BMTBC and BMSCC values of bulk tank milk. Although there is limited data 
collection from only 6 dairy farms, an increasing number of dairy farms is anticipated to 
embrace AMS in recent years. This preliminary result allows us to identify the reasons 
for the unstable quality of AMS milk and provides a direction for improvement in the 
future.
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The milk fatty acid (FA) profile is a valuable indicator of a cow’s nutritional and 
metabolic status, potentially aiding in assessing metabolic status at the individual 
cow level. However, limited knowledge exists regarding milk fat composition changes 
with parity. Understanding these changes during early lactation could enhance our 
understanding of dairy cow physiology. This study aimed to investigate whether milk 
FA composition differed between Holstein cows of different parities in early lactation. 
We characterized the milk FA profiles from day 7 to day 60 postpartum in primiparous 
(PP) and multiparous (MP) cows. A total of 26 Holstein Friesian dairy cows, including 
12 PP and 14 MP, were included in the study and divided into two groups based on 
parity. Milk samples were collected on days 7, 14, 21, 30, and 60 post-calving and 
analysed for milk FA profiles, including saturated FA (SFA), unsaturated FA (UFA), 
mono-unsaturated FA (MUFA), poly-unsaturated FA (PUFA), short-chain FA (SCFA), 
medium-chain FA (MCFA), long-chain FA (LCFA), total de novo FA, mixed FA, and 
preformed FA, using MilkoScan FT+  300 equipped with Fourier-transform infrared 
spectra. Blood samples were collected on days 7, 14, and 21 postpartum for the 
analysis of non-esterified fatty acids, beta-hydroxybutyrate (BHBA), glucose, and 
triglycerides, as well as for evaluating body condition scores (BCS). Partial Least 
Squares Discriminant Analysis (PLS-DA) was used to analyse the changes in milk 
composition over time in PP and MP. The results of PLS-DA showed changes in milk 
FA over lactation in both groups. PP had higher levels of UFA, MUFA, preformed FA, 
and LCFA compared to MP (P < 0.05). MP had higher levels of SFA, de novo FA, and 
SCFA compared to PP (P < 0.05). PP had higher BHBA levels in milk, suggesting a 
more severe negative energy balance post-calving compared to MP. However, the 
average postpartum BCS and preformed FA were higher and BCS loss and de novo 
FA were lower in PP than in MP. In the early lactation stage of dairy cows, the cow 
mobilizes stored body fat to meet high energy demands, leading to an increase in 
metabolic products such as ketone in the blood. PP cows may release higher levels 
of preformed FA during early lactation because their higher BCS. PP cows might also 
be more inclined to allocate energy to continued growth and milk production in the 
early stages of lactation. This could lead to a higher release of preformed fatty acids 
from stored body fat to meet the demands of milk production. These findings could 
inform nutritional management strategies to better meet the requirements of cows in 
early lactation.

Keywords: body condition score, energy balance, parity. 
Presented at the ICAR Anual Conference 2024 in Bled at the Session 6: Evaluation 
and presentation of new parameters in herd management for dairy farms 
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The milk fatty acid (FA) profile serves as a crucial indicator of a dairy cow’s nutritional 
and metabolic status, reflecting factors such as dietary intake, ruminal biohydrogenation, 
and mammary lipogenesis (McFadden and Corl, 2009). Factors like breed, parity, 
lactation stage, and feeding practices also influence the FA composition of milk (Poulsen 
et al., 2012; O’Callaghan et al., 2020). The FA profile of bovine milk is complex, 
comprising approximately 400 different FAs derived from mammary gland synthesis 
and circulating plasma (Giannuzzi et al., 2022). During early lactation, the mobilization 
of adipose reserves and diet processing result in changes in milk FA composition 
(Chilliard et al., 2000). These changes can be indicative of the cow’s energy status 
and metabolic health (Giannuzzi et al., 2022). Specific FAs, such as c9-18:1, are 
mobilized from body reserves during negative energy balance (NEB) in early lactation, 
reflecting the severity of NEB and serving as indicators of energy status (Bastin et al., 
2011; Gross et al., 2011). Conversely, short- and medium-chain FAs (e.g., C14:0) are 
synthesized de novo in the mammary gland and decrease in proportion during NEB 
(Churakov et al., 2021).

Non-esterified fatty acids (NEFA) in circulation reflect body reserve mobilization and 
dry matter intake (DMI), while beta-hydroxybutyrate (BHBA) reflects fat oxidation 
completeness in the liver (Adewuyi et al., 2005). NEFA released from lipid stores are 
either taken up by the udder to provide milk triglycerides or are oxidized in the liver 
as an alternative energy source (Duffield, 2000). The plasma NEFA concentration is 
therefore an index of lipid mobilization, with a rise in NEFA pre-partum suggestive of 
an energy deficit at this time. Elevated NEFA and BHBA concentrations indicate an 
increased risk of fatty liver and ketosis (Leblanc, 2010). These dysfunctions mainly 
concern the failure of individual animals to cope with complex nutritional and metabolic 
processes and to adapt to large variations in them during early lactation (Mulligan and 
Doherty, 2008). Although poor adaptation may start before calving, often it happens 
without clinical signs (Trevisi and Minuti, 2018; Mezzetti et al., 2020). Other markers of 
EB include changes in body condition score (Thorup et al., 2012; Chebel et al., 2018).

Parity significantly influences milk FA profile and yield, potentially due to differences 
in energy requirements and FA synthesis between primiparous (PP) and multiparous 
(MP) cows (Wilms et al., 2022; Bilal et al., 2014; Contarini et al., 2014; O’Callaghan 
et al., 2020). Limited information exists regarding milk fat composition changes with 
parity, particularly in early lactation, which could offer insights into dairy cow physiology 
(Contarini et al., 2014). Therefore, this study aims to investigate potential differences 
in milk FA composition between PP and MP Holstein cows in early lactation, shedding 
light on the physiological variations associated with parity in dairy cows.

There were 26 Holstein Friesian dairy cows, including 12 PP and 14 MP, were included 
in the study and divided into two groups based on parity. The cows entered the study 
during the first week after calving and stayed until 60 days in milk. All cattle were fed 
a total mixed ration (TMR) twice a day (at 0500h and 1400h) and had free access to 
clean water. The TMR formulation followed the NRC (2001) guidelines and included 
bermudagrass hay, alfalfa hay, corn silage, soybean hulls, brewers’ grains, and a 
concentrate consisting of corn and soybean meal. Cattle were milked twice daily (0500 
and 1600). All cows were housed together in a free stall facility equipped with rubber 
beds and solid concrete floors, which were scraped clean by a tractor six times a day. 
During the study period, the cows did not have access to pasture.

Introduction

Material and 
methods

Cows management 
and experimental 
design
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Blood samples were collected at d 7, 14, and 21 post-calving. Aseptic jugular 
venipuncture was performed using a 20-G needle and sterile vacutainers (EDTA, 
heparinized, or clot activators). EDTA vacutainers were employed to collect blood 
samples for BHBA, glucose, and triglyceride analysis. Clot activator vacutainers were 
used to obtain serum samples for NEFA analysis, while heparinized vacutainers were 
utilized for plasma biochemical profile analysis. After collection, the blood samples were 
centrifuged at 1,500 g for 15 minutes to separate serum and plasma, which were then 
stored at -20 °C until further analysis.

Blood samples were also analyzed immediately after sampling for BHBA and glucose 
using test kits (Optium Beta Ketone Test Strips and Optium Blood Glucose Test Strips; 
FreeStyle, Abbott, USA). Serum samples were utilized for the analysis of NEFA using 
a Hitachi 704 Analyzer (Hitachi, Japan). Plasma biochemical samples were used to 
analyze triglyceride using a 7170 Chemistry Analyzer (Hitachi, Japan).

Milk samples were collected from individual cows at 7, 14, 21, 30 and 60days in 
milk by the AFIMEN management system (Afimilk Ltd., Israel). The DHI (dairy herd 
improvement) laboratory analyzed and recorded each milk FA profiles, including 
saturated FA (SFA), unsaturated FA (UFA), mono-unsaturated FA (MUFA), poly-
unsaturated FA (PUFA), short-chain FA (SCFA), medium-chain FA (MCFA), long-chain 
FA (LCFA), total de novo FA, mixed FA, and preformed FA, using MilkoScan FT+ 300 
equipped with Fourier-transform infrared spectra. (FOSS, Denmark).

Trained personnel evaluated the body condition score (BCS) of the cows using a 
5-point scale (1 = thin, 5 = fat) (Edmonson et al., 1998) at 7, 14, 21 days postpartum. 
The BCS assessment was consistently performed by the same observer. BCS loss 
refers to the difference in BCS between day 21 and day 7 postpartum.

Statistical analysis included the use of ANOVA and Tukey’s post hoc test to assess 
differences in biochemical profile, FA profiles and BCS among the different parities. To 
analyze the variations in FA profiles among PP and MP dairy cows during experiment 
period, we used Partial Least Squares Discriminant Analysis (PLS-DA). We used the 
FA profiles data as the independent variable matrix and the different parities as the 
dependent variable. 

PP had higher levels of UFA, MUFA, preformed FA, and LCFA compared to MP 
(P < 0.05, Table 1). MP had higher levels of SFA, de novo FA, and SCFA compared 
to PP (P < 0.05). The BHBA value of PP was higher than 1.2 mmol/L, which is the 
threshold for subclinical ketosis. The average postpartum BCS and preformed FA were 
higher and BCS loss and de novo FA were lower in PP than in MP.

PLS-DA was used to analyse the changes in milk composition over time in PP and MP. 
PLS-DA demonstrated the evolution of the milk fatty acid profile from days 7 to 30 post 

Blood collection and 
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Milk sampling and FA 
profile analysis

BCS records

Statistical analysis

Results
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parturition in PP and MP cows (Figure 1). Using PLS-DA, we analyzed the changes 
in milk composition from day 7 to day 60 postpartum in primiparous and multiparous 
cows. The results of the PLS-DA revealed that as lactation days increased, there were 
changes in the distribution of samples, reflecting the changes in milk fatty acids over 
the course of lactation in primiparous and multiparous cows. For example, multiparous 
cows tended to cluster towards the negative direction of Component 2 on days 14 and 
21, and towards the positive direction of Component 1 on days 30 and 60. The samples 
from primiparous cows were more dispersed, tending to cluster towards the negative 
direction of Component 1 and Component 2 on days 30 and 60.

The composition of milk fat is strongly influenced by the stage of lactation (Palmquist 
et al., 1993). Initially, the proportion of SCFA produced via de novo synthesis is low, 

 
Table 1. BCS, biochemical profile, milk fatty acid (FA) composition in primiparous and multiparous cows 
during experiment period.  
 

Item 
Primiparous  

cows 
Multiparous  

cows 
P-Value 

BCS loss 0.02 0.19 < 0.05 
BCS 3.06 2.88 < 0.05 
Blood parameters    

NEFA (mmol/l) 0.48 0.47 0.88 
BHBA (mmol/l) 1.25 0.94 0.06 
Glucose (mg/dl) 56.88 56.52 0.86 
Triglyceride (mg/dl) 18.16 17.54 0.79 

Milk parameters    
Fat (%) 4.03 3.90 0.51 
Protein (%) 3.21 3.11 0.24 

Fatty acid composition (g/100 g of fatty acids) 
Total Saturated FA 63.45 65.97 < 0.05 
Total Unsaturated FA 31.81 28.80 < 0.05 
Mono Unsaturated FA 29.05 26.04 < 0.05 
Poly Unsaturated FA 2.75 2.75 0.94 
De novo FA 19.42 21.94 < 0.05 
Mixed FA 28.93 30.43 0.06 
Preformed FA 43.19 38.88 < 0.05 
Trans FA 3.07 3.57 < 0.05 
SCFA 7.84 9.03 < 0.05 
MCFA 42.75 43.96 0.36 
LCFA 42.55 39.55 < 0.05 
C14:0 8.62 9.16 0.07 
C16:0 27.37 28.02 0.39 
C18:0 13.27 12.61 < 0.05 
C18:1 27.43 25.12 < 0.05 

 
 

Table 1. BCS, biochemical profile, milk fatty acid (FA) composition in 
primiparous and multiparous cows during experiment period.

Discussion

BCS: body condition score; BCS loss refers to the difference in BCS between day 21 
and day 7 postpartum. NEFA: Non-esterified fatty acids; BHBA: beta-hydroxybutyrate; 
FA: fatty acid; de novo FA: C4 to C14; Mixed FA: C16, C16:1, and C:17; Preformed 
FA: Greater than or equal to C18; SCFA: C4 to C10; MCFA: C12 to C16; LCFA: C18.
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but it increases steadily until at least 8 to 10 weeks into lactation. We used the milk 
composition data as the independent variable matrix and the different parities as the 
dependent variable in PLS-DA. By calculating the main components obtained, we 
were able to identify patterns in milk fatty acid composition among different parities. 
The results showed that as the days in lactation increased, the distribution of milk FAs 
from different parities changed, reflecting the trends in milk FA composition over the 
lactation period.

As lactation progresses, the concentrations of preformed FA decrease, while those of 
de novo FA and mixed-origin FA (e.g., 16:0) increase (Kay et al., 2005). The milk FA 
profiles reflect changes in the cow’s energy balance (Churakov et al., 2021). PP cows 
exhibited higher levels of UFA, MUFA, preformed FA, and LCFA compared to MP cows 
in this study (P < 0.05, see Table 1). In contrast, MP cows had higher levels of SFA, de 
novo FA, and SCFA compared to PP cows (P < 0.05). These results indicate differences 
in metabolism between PP and MP cows during the early lactation stage.

During the early lactation stage of dairy cows, the cow mobilizes stored body fat to meet 
high energy demands, resulting in an increase in metabolic products such as ketones 
in the blood (Leblanc, 2010). In our study, PP cows had higher blood ketone levels 
than MP cows, indicating that PP cows experienced higher energy demands. Blood 
glucose levels are tightly regulated by homeostasis and may not serve as a reliable 
indicator for monitoring or investigating health status (Herdt, 2000). Therefore, Van et 
al. (2020) and our study did not find differences in blood glucose levels based on parity.

The common NEB is compensated for by the mobilization of fat from body reserves 
during the first weeks after parturition in dairy cows, leading to the release of preformed 
FA; C18:1c9 is the predominant UFA in adipocytes and is primarily released through 
lipolysis during NEB (Rukkwamsuk et al., 2000). Subsequently, preformed long-
chain non-esterified fatty acids (≥C18) derived from plasma are incorporated into 
milk fat and inhibit the de novo synthesis of SCFA (C4-C14) by the mammary gland 
(Bauman and Davis, 1974). Therefore, blood NEFA concentrations are related to milk 
LCFA concentrations. Additionally, according to Churakov et al. (2021), during this 
experiment, PP cows with C18:1 > 26 (Table 1) have already reached a state of NEB 
(-30 MJ NEL/d), and blood BHBA > 1.2 mmol/L has reached the threshold for subclinical 
ketosis, indicating a more severe NEB after calving than MP cows.

Figure 1. Partial least square discriminant analysis (PLS-DA) depicting the changes in milk fatty acid 
profile occurring as milk transition from days 7 to 60 post parturition [days 7, 14, 21, 30, 60 post parturition 
(red, green, blue, violet, yellow, respectively)].

 

 
Figure 1. Partial least square discriminant analysis (PLS-DA) depicting the changes in milk fatty acid profile 
occurring as milk transition from days 7 to 60 post parturition [days 7, 14, 21, 30, 60 post parturition (red, 
green, blue, violet, yellow, respectively)]  
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BCS is widely recognized as a reliable indicator of a dairy cow’s nutritional status, body 
fat content, and early lactation dry matter intake (Roche et al., 2009). Furthermore, the 
health of dairy cows may be compromised if they lose more than 0.25 BCS points during 
the first month of lactation (Roche et al., 2009). However, in PP cows, the average 
postpartum BCS was higher and BCS loss was lower than in MP cows, suggesting 
less mobilization of body fat stores for energy production in milk fat. This indicates 
significant differences in energy metabolism compared to MP cows in our study.

In our study, PP cows, with their higher BCS, may release higher levels of preformed 
FA during early lactation. At the start of their first lactation, the competing demands 
of the mammary gland are superimposed on the requirements for growth (Etherton, 
1982). Both insulin and insulin-like growth factor I (IGF-I) have positive growth-
promoting effects (Oksbjerg et al., 2004), with IGF-I being the primary regulator of 
postnatal muscle hypertrophy, stimulating protein synthesis, and inhibiting degradation 
(Etherton, 1982). Studies comparing the metabolic data from PP and MP cows showed 
consistently higher concentrations of IGF-I throughout the period from −1 to +7 weeks 
after calving in PP cows (Wathes et al., 2007). These results suggest that the differing 
endocrine background in less mature animals may limit the partitioning of nutrients into 
milk (Wathes et al., 2007; Bilal et al., 2014; Contarini et al., 2014; O’Callaghan et al., 
2020). This may be related to differences in energy requirements and partitioning, as 
well as differences in FA synthesis between PP and MP cows (Miller et al., 2006). Our 
findings could inform nutritional management strategies to better meet the requirements 
of cows in early lactation.

In our study, PP cows demonstrated higher levels of UFA, MUFA, preformed FA, and 
LCFA compared to MP cows. Conversely, MP cows exhibited higher levels of SFA, de 
novo FA, and SCFA compared to PP cows. PP cows with BHBA reached the threshold 
for subclinical ketosis, indicating a NEB after calving compared to MP cows. However, 
the average BCS postpartum and preformed FA were higher, and BCS loss and de 
novo FA were lower in PP than in MP cows. PP cows also appeared to prioritize 
energy allocation towards continued growth during the early lactation stages. These 
observations may be attributed to differences in energy requirements and partitioning, 
as well as variations in FA synthesis between PP and MP cows. This understanding 
could inform nutritional management practices during early lactation to better address 
the distinct needs of cattle in different parity groups. 
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An objective tool to assess the quality of the transition management practices is an 
important aid in maximizing the performance and profitability of dairy farms. Our 
objective was to create an index to assess the transition period of dairy cows using 
Canadian data (Transition Management Index; TMI) and benchmark current practices. 
The methodology was inspired by the Transition Cow Index® developed by Nordlund 
(2006). We used over one million DHI cow records from 2017-2020 from all provinces in 
Canada.  included cows from lactation 1 to 7, from 8 breeds (Holstein, Jersey, Ayrshire, 
Brown Swiss, Guernsey, Canadian, Milking Shorthorn, and others), and 3 milking 
systems (pipeline, parlour, and robotic systems). Models were developed separately for 
primi- and multiparous cows using mixed-effect linear regression in R (lme4 package) 
with the fixed variables breed, lactation start reason, milk testing scheme, age at first 
calving (primiparous only), milking frequency, and estimated breeding values for milk, 
fat, and protein, and a random herd effect. The models for multiparous cows also 
included previous lactation start reason, DIM, peak DIM, peak milk yield, 305-d milk 
yield, average somatic cell score (SCS), days dry, and lactation number. The TMI 
consists of the difference between the expected milk production estimated by the 
model and the 305-d projection at the first milk test (i.e., between 5-45 DIM), which 
also included DIM, beta-hydroxybutyrate (BHB), SCS, and 24-h milk yield. 

The novelty of the TMI in comparison to the previous index is the inclusion of new 
traits potentially associated with transition management as well as the calculation of 
an index for first lactation cows. Results showed that the TMI herd average in 2022 
was -27 (range of −1737 to 1334), and 49% of the cows had a negative TMI. Older 
cows have a lower TMI than younger cows (Lact 1 = 24; Lact 2 = -34; Lact 3+ = -55). 
Robotic herds had a greater average TMI (39) than pipeline (−54) or parlour systems 
(−100). There is a positive correlation (R = 0.64) between TMI and milk production. 
An increase of 100 points in the TMI is equivalent to an increase of 100 kg of milk 
and 3.5 kg of butterfat per standard lactation. A total of 5,070 Canadian herds were 
classified in percentiles according to the average TMI and their herd performance and 
profitability were compared. The top 20% of the herds have a daily milk yield 4.5 kg 
higher, produce 5.7 kg more milk at peak lactation, and produce 1,584 kg more milk 
and 62 kg more butterfat per lactation than the average. In addition, the top 20% of 
the herds have a yearly milk revenue of C$1,307/cow higher and a revenue per day 
of life of C$0.90/cow higher than the average. Higher herd TMI was associated with 
greater average milk value (R = 0.61), a lower SCC average (R= -0.35), and a lower 
percentage of cows with elevated or low MUN levels (R= -0.25). In addition, higher 
herd TMI was associated (R= -0.26) with shorter calving intervals. We are developing 
an interactive TMI dashboard to be launched in 2024. The main page features TMI 
cow records, annual averages, and provincial benchmarks, as well as KPI indicators 
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and drill-down functions on related transition management aspects such as udder 
health, energy status, rumen health, and dry period that enable producers and their 
advisors to assess the transition practices and identify opportunities for improvement.

Keywords: transition period, performance, management .  
Presented at the ICAR Anual Conference 2024 in Bled at the Session 6: Evaluation 
and presentation of new parameters in herd management for dairy farms 

The transition period is considered the most challenging phase for dairy cows. During 
this period, nutrient imbalance is observed due to the higher metabolic demands 
and a decrease in feed intake (Bauman and Currie, 1980; Bell, 1995), consequently 
leading to an increased risk of oxidative stress (Sordillo and Aitken, 2009), reduced 
immune function (LeBlanc, 2020), and potentially higher inflammatory response 
(Contreras et al., 2018). Although those challenges are common to dairy cows during 
the transition period, a subset of cows may exhibit inadequate adaptation, leading to 
enduring consequences to performance throughout the whole lactation. Considering 
the impact of animal productivity on farm profitability, management programs need 
to be developed aiming to reduce the transition challenges and to quickly identify 
opportunities for improvement. 

The results of the first test in the lactation provide insights into those challenges. A 
tool called Transition Cow Index™ (TCI) was developed in 2006 (Nordlund, 2006) to 
objectively evaluate transition management at the herd level. The tool uses fourteen 
factors from DHI records to project milk yield; and the first test date results to project 
the 305-d milk yield. Originally developed based on cow records from herds registered 
on the Wisconsin DHIA, the TCI is currently used in some provinces of Canada as a 
management tool. Nonetheless, advancements in management practices, along with 
enhancements in genetics and augmented milk yields, have been observed since 2006. 
In addition, using a Canadian index may reflect better the intricacies of the Canadian 
dairy industry. Therefore, our objective was to create an index to assess the transition 
period of dairy cows using Canadian data and develop an interactive dashboard to 
facilitate the use of the index.

Data was extracted from the Lactanet database for lactations with a calving date 
between 2017 and 2020. This included animal and herd information, calving and 
lactation records including 305d milk production, test day records for the first test post-
calving occurring between 5-60 DIM, dam deviations for production mature equivalents, 
and herd level production. Genetic evaluations were also available for all herdbook 
registered animals. Data included cows from all Canadian provinces and represented 
the seven dairy breeds in Canada, Holstein, Jersey, Ayrshire, Brown Swiss, Guernsey, 
Canadienne, and Milking Shorthorn, as well as crossbred or unknown breeds. Only 
lactations one through eight were retained due to the limited number of records in higher 
lactations. For first parity animals with a completed first lactation record and first test 
record in that lactation, further requirements were an age at calving between 18 and 
47 months and herdbook registration. The final number of records was 373,297 for 
first lactations and 688,299 from later lactations.

Models were developed separately for first and later lactations due to the differences 
in data available for each group, where later lactations will have information on their 
previous lactation performance. The formulation of the models followed the general 
methodology described by Nordlund (2006) for the Transition Cow Index™. For each 
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of the first and later parity groups two models were developed, one to estimate the 
expected 305d milk production without any test day information (“prediction”) and one 
to estimate the 305d milk production with the first test day record (“projection”). The 
“prediction” milk production minus the “projection” milk production represents the final 
TMI value of interest.

All models were created using mixed-effect linear regression using the lme4 package 
in R. Herd at test day was included as a random effect in the training model to account 
for variation due to the herd environment. Initially, all variables were included as 
fixed effects in their respective model. Polynomial terms were considered for some 
traits. Variables were retained if significant (P<0.10) in at least one of the two models 
following a combination of backward elimination and forward selection. The impact 
of variable inclusion on the final index values was also considered for retention, such 
that if variables more complex to implement had little impact, they were removed. A 
further consideration in variable selection was the degree of missing data for a trait 
to ensure the model would apply to a large proportion of the population. Final fixed 
variables included breed, lactation start reason, milk testing scheme, age at first calving 
(first lactation only), milking frequency, and estimated breeding values for milk, fat, and 
protein. Later lactation models also included previous lactation start reason, DIM, peak 
DIM, peak milk yield, 305-d milk yield, average SCS, days dry, and lactation number. 
The “projection” models included all the same variables as the “prediction” and further 
included DIM, beta-hydroxybutyrate (BHB), SCS, and 24-h milk yield at the first test.

At the individual level, there was a strong correlation (R=0.95) between the TCI and 
TMI results for both lactation 2 and 3+ cows (Figure 1).

At the individual level, the TMI average was -27 and 49% of the cows had an index 
below zero (Figure 2). The TMI average was slightly higher for Lactation 1 cows (25) 
than for Lactation 2 (-34) and Lactation 3+ cows (-55). However, the percentage of 
cows below zero was similar between lactation groups (Lact. 1 = 48; Lact. 2 = 50; Lact. 
3+ = 50) (Figure 2). The TMI equation for Lact. 2+ cows incorporate additional variables 
due to the information about previous lactation, unavailable for Lact. 1 cows. Given 
this distinction, one might hypothesize that genetic parameters would exert a more 
significant influence on the TMI of Lact. 1 cows. However, a relative metrics analysis 
demonstrated that, apart from breed, no variable exhibited greater importance in the 
Lact. 1 equation.  

The TMI average for herds with robotic milking systems (39) was higher than for herds 
with pipeline (-54) and parlour systems (-100). The higher average is accompanied 
by a lower percentage of cows with TMI below zero for herds with robotic milking 
systems (44.1 %) than pipeline (51.4%) and parlour milking systems (53.2%). In 
2021, we compared the performance of Canadian herds according to the milking 
system (Brisson, 2021) and we also find a higher TCI for robotic herds in comparison 
to pipeline and parlour. 

In general, Ayrshire herds had the lower TMI (-150) and the greatest proportion of 
cows with TMI below zero (58.5%), in comparison to Holstein (TMI = -39, % below 
0 =49.9%) and Jersey herds (TMI = -81; % below 0 = 53.8%). 
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Figure 2. Transition management index average (left) and percentage of cows with a Transition Management 
Index below zero (right) according to lactation groups.

Figure 1. Relationship between the Transition Cow Index™ and the new Transition Management Index 
for cows from lactation category (cat_lat) 2 and 3+.
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Figure 2. Transition management index average (left) and percentage of cows with a 
Transition Management Index below zero (right) according to lactation groups. 

The TMI was correlated (R=1) with 305-day milk, and every increase in 100 points in 
the herd TMI is equivalent to an increase in 100 kg of milk and 3.5 kg of butterfat per 
standard lactation.

A total of 5,070 Canadian herds were classified in percentiles according to the average 
herd TMI, and those herds with the top 20% averages had a lower percentage of cows 
with negative TMI, higher milk and fat yield, had a higher production at peak, and a 
greater milk revenue than the average (Table 1).

The herd TMI average was negatively correlated with annual SCC average (R=-0.35), 
calving interval (R=-0.26), and extreme MUN values (< 8 mg/dL or >18 mg/dL; R=‑0.25), 
and positively correlated (R=0.61) with milk value (Figure 3).

Relationship 
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We created an interactive dashboard to present the results of the herd Transition 
Management Index. The dashboard main page contains the TMI herd average, the % 
of animals with a negative index, the average of the current test, and a graph where 
is possible to assess individual TMI values. It also contains information about key 

Figure 3. Relationship between herd Transition Management Index and herd average 
milk value, SCC, % of cows with extreme MUN levels, and calving interval.

Table 1. Production and profitability parameters of 5,070 Canadian herds classified in percentiles according 
to the average herd Transition Management Index (TMI). 
 
 Herd Percentiles 

Average  0-20 20-40 40-60 60-80 80-100 
TMI -534 -188 -10 155 419 -49 
Cows with negative TMI, % 78.9 60.7 48.2 36.7 23.3 50.6 
Milk yield, kg/day 22.6 26.3 27.7 29.8 32.0 27.5 
Fat yield, kg/day 0.94 1.11 1.16 1.25 1.33 1.15 
Protein yield, kg/day 0.76 0.89 0.94 1.01 1.07 0.93 
Milk yield, kg/year 8,362 9,708 10,226 10,890 11,701 10,117 
Fat yield, kg/year 342 400 421 446 477 415 
Protein yield, kg/year 279 326 344 365 391 339 
Milk at peak lactation, kg 34.6 39.0 40.9 43.2 46.3 40.6 
Days to peak lactation 45.6 47.1 47.0 47.6 47.7 47.0 
Milk revenue, $/cow/year 4,625 5,679 6,023 6,755 7,289 5,982 
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Figure 3. Relationship between herd Transition Management Index and herd average milk 
value, SCC, % of cows with extreme MUN levels, and calving interval. 

Table 1. Production and profitability parameters of 5,070 Canadian herds classified in 
percentiles according to the average herd Transition Management Index (TMI).

Transition 
Management Index 
dashboard
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performance indicators (KPIs) at transition period, such as udder health, energy status, 
and ruminal health, dry period length, among other information. Each one of those 
indicators has its tab, which brings more information about each KPI in early lactation, 
helping to identify opportunities for improvement (Figure 4).

Figure 4. Main page of the Transition Management Index dashboard created by Lactanet Canada.

 

 

Figure 4. Main page of the Transition Management Index dashboard created by Lactanet 
Canada. 
 

In conclusion, the Transition Management Index serves as an invaluable objective 
tool to assess the transition period practices on farm. Its correlation with production, 
reproduction, and health parameters indicates that the transition success is associated 
with herd performance and profitability. The use of the TMI and its dashboard will guide 
producers and advisors to better assess the farm operation, identify opportunities for 
improvement, and facilitate informed decision-making processes.

The authors would like to thank all dairy producers and industry partners involved in the 
development of the tool, and the financial support through the Innov’Action Agri‑Food 
Program under the Canadian Agricultural Partnership, as part of the agreement between 
the governments of Canada and Quebec.
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Size and milk production of dairy cows have increased over time. However, the 
magnitude of this increase and its relationship with productivity across lactations has 
been little studied. The objective of this analysis was to describe the evolution over 
the last two decades of the mature BW (MBW), mature production and the relative 
maturity (RMAT) and performance (RPER) during the first two lactations of Holstein 
cows. Data from first (L1), second (L2) and third and more lactations (L3+) from 2002 
to 2021 were extracted from the Quebec DHI data base. Records of age at first calving 
(AFC, 1,413,772), BW (565,710; 713,668 and 1,152,530) and 305 d-adjusted milk and 
components yields (1,334,433; 1,0310,24 and 1,538,492) from L1, L2 and L3+ cows, 
respectively, were averaged per year. The L3+ cows were considered as mature and 
the reference to evaluate RMAT and RPER of L1 and L2 cows. Data from L3+ cows 
and AFC were regressed against time while RMAT and RPER were analyzed using a 
fixed effect model including year, parity and their interaction. The BW and milk (MY), 
fat (FY) and protein yields (PY) of L3+ cows increased since 2002 (P<0.01) at rates of 
3.7±0.1, 109±5, 5.7±0.2 and 4.0±0.2 kg per yr, respectively. In 2021 L3+ cows weighed 
738±1.2 kg and produced 11,184±56, 447±2.6 and 364±2.8 kg of milk, fat and protein, 
respectively. The AFC decreased (P<0.01) at a rate of 0.15±0.01 mo per year, averaging 
24.8±0.13 mo in 2021. L1 cows’ RMAT decreased (P<0.01) at 0.09±0.01% per year 
and was 87.4±0.1% of MBW in 2021. Overall, L2 cows’ RMAT was 94.46±0.05% of 
MBW and did not change over time (P=0.61).  The RPER decreased over time (P<0.01) 
but at a faster rate in L1 than in L2 cows (P<0.01) for MY (0.22±0.2 vs 0.06±0.2% per 
yr), FY (0.17±0.2 vs 0.04±0.02% per yr) and PY (0.24±0.01 vs 0.07±0.02 % per yr). 
In 2021 MY, FT and PY relative to L3+ cows were 80.3, 81.5 and 81.5% for L1 and 
95.0, 95.2 and 96.6 % for L2 cows, respectively. Despite the significant progress in 
mature lactational performance and AFC, there has been a decline in the RPER of L1 
and L2 cows that deserves to be addressed.  

Keywords: Maturity, lactation, firts calving, body weight, milk yield. 
Presented at the ICAR Anual Conference 2024 in Bled at the Session 6: Evaluation 
and presentation of new parameters in herd management for dairy farms 

The average milk production per cow has risen progressively in the past years. In 
the past 50 years, the average 305-d lactation yield for Holstein cows increased by 
approximately 5,000 kg (Brito et al., 2021). This expressive augment in milk production 
is driven by intensive genetic selection, along with improvement in nutritional practices, 
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precision management, reproductive technologies, and improvement in health 
management (Brito et al., 2021).

At the same time, the size of dairy cows has increased over the years. Body weight 
(BW) is a characteristic that impacts nutrient requirements, feed intake, space needs, 
and medication dosing, among other factors. However, the magnitude of the increase 
in body weight and its relationship with productivity across lactations has been little 
studied. Therefore, the objective of this study was to describe the evolution over the 
last two decades of the MBW, mature production, and relative maturity (RMAT) and 
performance (RPER) during the first two lactations of Holstein cows. 

Data from Lactation 1 (L1), Lactation 2 (L2), and Lactation 3+ (L3+) cows were 
extracted from Lactanet database, corresponding to a period of 20 years (from 2002 
and 2021). A total of 1,413,772 records of age at first calving (AFC), 2,431,870 records 
of BW (L1 = 565,710; L2 = 713,668; and L3+ = 1,152,530), and 3,903,949 records 
of 305-d adjusted milk and component yields (L1 = 1,334,433; L2 = 1,0310,24; and 
L3+ = 1,538,492) were analysed.

An average per year was calculated for the parameters. For calculating RMAT and 
RPER, data from L3+ cows were considered as mature and used as reference values 
for L1 and L2 cows. 

Data from L3+ cows and AFC were regressed against time; and data from RMAT and 
RPER were analyzed using a fixed model including the effects of year, parity, and the 
interaction between year and parity. 

According to our records, in the past 20 years, there was an increase in the 305-d milk 
yield of mature cows, and this increase was accompanied by an increase in mature 
body weight as well (Figure 1). The BW and milk, fat, and protein yields of L3+ cows 
increased since 2002 at rates of 3.7, 109, 5.7, and 4.0 kg per year, respectively. In 
2021, mature cows weighed 738 ± 1.2 kg, and produced 11,184 ± 56, 447 ± 2.6, and 
364 ± 2.8 kg of milk, fat, and protein, respectively. 

The AFC decreased (P < 0.01) at a rate of 0.15 ± 0.01 months per year, averaging 
24.8 ± 0.13 months in 2021 (Figure 2).

Overall, L1 cows RMAT decreased (P < 0.01) over time, by a rate of 0.09 ± 0.01% per 
year and was 87.4 ± 0.1% of MBW in 2021 (Figure 3, L1). The decrease in maturity 
of L1 cows does not follow the same pattern as that of the age at first calving. Overall, 
L2 cows’ maturity was 94.46% of MBW and did not change (P = 0.61) over time 
(Figure 3, L2).
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Figure 1. Evolution of body weight and 305-d milk yield of third and more lactation (L3+) cows.

Figure 2. Evolution of age at first calving (AFC).
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Figure 1. Evolution of body weight and 305-d milk yield of third and more lactation (L3+) 
cows. 
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Figure 2. Evolution of age at first calving (AFC). 
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Figure 3. Evolution of the maturity and relative milk (MY), fat (MF), and protein yields (MP) 
for 1st (L1) and 2nd lactation (L2)  Holstein cows.
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Figure 3. Evolution of the maturity and relative milk (MY), fat (MF), and protein yields (MP) 
for 1st (L1) and 2nd lactation (L2)  Holstein cows. 
 
 

 
 The relative performance decreased over time but at a faster rate in L1 than in L2 cows 

and the greatest decline was observed in the protein and milk relative yields.  In 2021 
milk, fat, and protein yields relative to L3+ cows were 80.3, 81.5, and 81.5% for L1 and 
95.0, 95.2, and 96.6 % for L2 cows, respectively. The decline in relative performance 
of L1 and L2 cows does not correspond to the evolution of their maturity. 

In conclusion, significant advancements have been achieved in AFC and the mature 
lactation performance. The increase in mature performance coincides with an increase 
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in MBW. However, a decline in the relative performance over time has been observed 
for first and second-lactation cows, particularly for protein and milk yield. Interestingly, 
this decline in RPER of L1 and L2 cows does not correspond to the evolution of RMAT. 
Moreover, the decline in RMAT of L1 cows does not follow the same trend as the one 
observed for AFC. It is imperative to further explore and address the decline in RPER 
and explore potential management and nutritional factors that could be limiting the 
performance of L1 and L2 cows. 

Lactanet would like to acknowledge and thank the dairy producers in the province 
of Quebec registered to its DHI service for allowing the use of their records for this 
analysis and the advancement of dairy science. 
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Genetic selection of high-yielding dairy cattle toward sustainability farming systems 
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Modern animal breeding methods, such as genomic evaluation of breeding values 
(GEBV), are based on large amounts of phenotypic and genetic data. The reliability 
of GEBV results and the general selection process depends on the accuracy of the 
primary phenotypic data. Test day milk samples implied to be collected from unique 
cows may actually be dispensed from a sampler or milk tank. We will further call such 
milk samples dispensed or DS. To address this issue, a new DS identification system 
using clustering algorithm (OPTICS) was developed to improve accuracy in detecting 
DS in milk samples. Results showed high accuracy in identifying DS in small batches, 
when samples were not dispensed sequentially or were mixed with unique samples. 
Large batches with more than 60 DS in each were also accurately detected. However, 
the algorithm showed low accuracy on batches with low DS proportion. This new method 
has already been implemented in the milk analysis laboratory and will continue to be 
refined for better data filtering in breeding value systems. 

GEBV plays the key role in modern methods of livestock production and selection 
work. Yearly the number of farms including GEBV in their work raises significantly 
(Song et al., 2023) leading to great increase of data collected and analyzed. While 
GEBV calculations take into account as much available livestock data as possible, 
the unreliable data may lead to bias and mistakes in GEBV results and erroneous 
conclusions in selection work. That is why data quality control is crucial process of 
data preprocessing before GEBV (Cabrera et al., 2020).  

One of the primary categories of traits in dairy cattle is milk traits, often assessed 
through TD (test-day) milk samples analyzed in milk laboratories. Research suggests 
that one potential factor leading to skewed TD milk results is the collection of samples 
from tanks, rather than individual cows. It’s important to identify samples collected from 
tanks and exclude them from GEBV (genomic estimated breeding value) analysis. 
While our laboratory acknowledges batches containing dispensed samples collected 
from tanks (DS) in sequential order, identifying DS samples mixed with unique samples 
in a batch is more challenging.

The aim of our work is creation of more accurate recognition of DS system. The main 
objectives of this study are:

•	 The recognition of DS in the TD samples batch 

•	 Identification of DS for subsequent data filtering
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TD milking data collected from 2019 to 2024 was used to generate test datasets. These 
datasets included batches with varying amounts of dispensed samples (DS), ranging 
from 0 to 121 DS per batch. We generated a total of three datasets:

•	 Dataset 1: Comprised of 1019 batches, 994 of which contained between 15 to 
100 DS each.

•	 Dataset 2: Comprised of 4298 batches, 4289 of which contained between 15 to 
100 DS each.

•	 Dataset 3: Comprised of 1000 batches, 997 of which contained between 15 to 
121 DS each.

The generation of DS was done as follows:

•	 Dataset 1: In each batch, one sample was chosen randomly. Its fat and protein 
content were used to generate 15 to 100 points with mean values equal to the fat 
and protein content of the chosen sample, and a standard deviation of 0.1. These 
generated points were added to the batch data file in random strings, mixing 
DS with unique samples. Consequently, the samples in Dataset 1 are generated 
as if dispensed from one tank.

•	 Dataset 2: The generation method was similar to Dataset 1, but with a variation 
in the number of samples chosen to generate DS. Here, the number of samples 
used to generate DS varied randomly from 1 to 10. Thus, Dataset 2 represents 
batches with DS obtained from multiple tanks.

•	 Dataset 3: This dataset consists of batches with or without DS from one tank, similar 
to Dataset 1. However, the number of DS per batch varied depending on batch 
size: 15-61 DS in small batches, 29-101 DS in medium batches, and 59-121 DS 
in large batches.

A summary of the generated datasets is shown in Table 1.

To improve the quality control algorithm and recognize DS mixed with unique samples in 
a batch, we applied unsupervised machine learning. We developed an algorithm based 
on clustering, utilizing the density-based method OPTICS (Ordering Points To Identify 
the Clustering Structure) (Ankerst et al., 1999), available in the Python scikit‑learn 
module (Pedregosa et al., 2011). The core idea of the algorithm is to identify clusters 
of high-density points in the space of milk sample parameters.

We focused on two milk sample parameters obtained from Fossomatic: fat and protein 
content. The OPTICS clustering algorithm takes the data to be clustered and the 

Material and 
methods 

 

 

 
Table 1. Description of generated datasets.  
 

Dataset 
Number of 

batches 

Number of  
batches with 

DS 

Number of tanks  
in batch 

Number of samples  
in one tank 

1 1019 994 0 or 1 15-100 
2 4298 4289 0 or 1-10 15-100 

3 1000 997 0 or 1 
15-611 

29-1012 
59-1213 

1Small size batches, batch size < 150 samples  
2 Medium size batches, 150 < batch size < 800 samples 
3 Large size batches, batch size > 800 samples 

 
 
  

Table 1. Description of generated datasets.
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clustering parameters: min_samples (the minimum number of points, MinPts) and 
max_eps (the maximum distance for clustering).

For identifying batches containing DS, we used max_eps = 0.2. The min_samples 
value varied based on the number of samples in a batch:

•	 For small batches (fewer than 150 samples), we used min_samples = 15.

•	 For medium batches (150 to 800 samples), we used min_samples = 30.

•	 For large batches (more than 800 samples), we used min_samples = 60.

We tested the clustering algorithm on the three datasets described above and calculated 
metrics to evaluate the quality of clustering. First, we assessed the algorithm’s ability 
to recognize batches containing DS. According to the algorithm, a batch is considered 
to contain DS if more than one cluster is found. The calculated performance statistics 
and metrics are shown in Table 2 and Table 3, respectively.

The metrics used to evaluate the algorithm’s performance quality included:

•	 Rand Index (RI).

•	 Adjusted Rand Index (ARI).

•	 Mutual Information (MI).

•	 Adjusted Mutual Information (AMI).

•	 V-measure.

•	 Homogeneity.

•	 Completeness.

The results shown in Table 2 display fine algorithm performance on small batches. 
However, the performance on Datasets 1 and 2 decreases with an increase in batch 
size, a trend not observed in Dataset 3. This performance decline is presumably 
associated with the proportion of DS in a batch. As the batch size increases, more 
samples have similar fat and protein content values, making it harder for the algorithm 
to determine if a small collection of points is DS. With increasing batch size, the 
min_samples parameter (the number of samples in a neighbourhood for a point to be 
considered a core point) also increases. As a result, small clusters of DS cannot be 
properly detected with this method. Not increasing the min_samples parameter with 
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Table 2. Clustering performance statistics.  
 
  Dataset 1 Dataset 2 Dataset 3 

  True False True False True False 
All 
batches 

Positive 881 4 4225 1 982 3 
Negative 21 113 4 168 15 0 

Small 
batches 

Positive 60 0 305 0 63 1 
Negative 2 1 2 6 3 0 

Medium 
batches 

Positive 551 3 2509 1 595 0 
Negative 13 52 2 34 9 0 

Large 
batches 

Positive 269 1 1411 0 324 2 
Negative 6 60 0 128 3 0 

 
 
 
Table 3. Clustering performance metrics.  
 

  
V-

measure 
RI ARI MI AMI Homogeneity Completeness 

D
at

as
et

 1
 

All batches 0.13 0.80 0.20 0.03 0.13 0.29 0.08 
Small 
batches 0.66 0.97 0.78 0.11 0.66 0.78 0.58 

Medium 
batches 0.16 0.84 0.26 0.04 0.16 0.31 0.11 

Large 
batches 0.07 0.70 0.10 0.02 0.07 0.22 0.04 

D
at

as
et

 2
 

All batches 0.03 0.93 0.04 0.002 0.03 0.27 0.01 
Small 
batches 0.31 0.96 0.38 0.02 0.30 0.63 0.20 

Medium 
batches 0.06 0.97 0.10 0.002 0.06 0.29 0.04 

Large 
batches 0.00 0.85 0.00 0.00 0.00 1.00 0.00 

D
at

as
et

 3
 

All batches 0.83 0.99 0.90 0.06 0.83 0.77 0.90 
Small 
batches 0.73 0.97 0.84 0.15 0.72 0.66 0.82 

Medium 
batches 1.00 1.00 1.00 0.07 1.00 1.00 1.00 

Large 
batches 0.64 0.99 0.74 0.04 0.64 0.53 0.80 

 

Table 2. Clustering performance statistics. 
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increasing batch size would lead to a rapid growth in the false positive rate by extracting 
false, occasional clusters.

Due to the apparent dependence of the algorithm’s performance on the proportion 
of DS in a batch, we decided to generate and analyse a dataset with an increasing 
number of DS corresponding to the increasing batch size (Dataset 3). The performance 
of the algorithm on Dataset 3 shows zero false-negative results with a quite low false 
positive rate, effectively avoiding Type II errors.

Regarding the accuracy of the tests carried out, our algorithm can detect batches with 
DS if the batch is small or if the DS tank is big enough (more than 30 and 60 samples 
in medium and large batch respectively). The identification of small number of samples 
in large batches is still difficult. For further development of the algorithm, we plan to 
aim our work at:

•	 Development of method to detect small DS clusters in large batches properly,

•	 Development of method to choose the proper clustering parameters to detect every 
serial number of DS properly.

•	 Development of an algorithm to choose clustering parameters for accurate 
identification of DS within a batch.

Ankerst, M., Breunig, M.M., Kriegel, H.-P., Sander, J., 1999. OPTICS: 
ordering points to identify the clustering structure, in: Proceedings of the 1999 
ACM SIGMOD International Conference on Management of Data. Presented at 
the SIGMOD/PODS99: International Conference on Management of Data and 
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Energy transition, limited resources and climate change are setting new priorities for 
local food security and call for a plan for sustainable food production in particularly 
affected areas. This is why the Alsace Chamber of Agriculture and the Regional 
association for performance testing in livestock breeding of Baden-Württemberg have 
jointly launched a new project in October 2023 to continue the innovative and strong 
partnership of recent years. As the name “ResKuh” suggests (“Kuh” being the German 
translation of cow), the project focuses on improving resilience in bovine milk and meat 
production. The aim of the project is to support farmers in improving the sustainability 
of their production systems and in optimizing the use of scarce resources in times of 
climate change. The project area covers the Upper Rhine region with Alsace in France, 
Baden in Germany and the High Jura in Switzerland. An important topic that is being 
addressed is the improvement of water management in dairy farming by reducing water 
consumption and optimizing the use of resources. Another goal is the development of 
innovative meadow and pasture management to preserve grassland, particularly with 
regard to dry periods and more efficient use of self-produced feed. Furthermore, experts 
from the ResKuh project are working on the sustainability of farms, in particular with 
regard to animal welfare, the greenhouse gas emissions and the energy transition. By 
bringing together experts from research, training and consultancy fields from the three 
countries, ResKuh aims to provide suitable tools to support farmers in overcoming the 
above-mentioned challenges of climate change and to offer technical aids and training 
for farmers on the topics mentioned. Cooperation across national borders benefits of 
skills, tools and methods available on both sides of the Rhine and at the same time 
promotes exchanges between farmers who are affected by the same problems in the 
three countries involved.

Keywords: herd management, production, dairy cow, dairy farming, MIR, spectral data. 
Presented at the ICAR Anual Conference 2024 in Bled at the Session 6: Evaluation 
and presentation of new parameters in herd management for dairy farms 

Climate change presents numerous challenges across various sectors of human activity 
in the present day. The increasing frequency and duration of extreme weather events, 
such as droughts, coupled with rising global temperatures, elevate the risk for farms in 
terms of water scarcity and animal well-being (Huber and Gulledge, 2011). Livestock 
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systems are particularly vulnerable to the impacts of climate change (Kuczynski et 
al., 2011) and contribute significantly to greenhouse gas (GHG) emissions, including 
carbon dioxide (CO2), methane (CH4), and nitrous oxide (N2O) (Lesschen et al., 2011).

Addressing the effects of climate change on agriculture and animal production, as well 
as mitigating these sectors’ impact on the environment is crucial to ensure a sustainable 
food supply for a growing global population (Bauer et al., 2016). Research initiatives 
like the project ResKuh aim to provide adaptation options for agricultural farms in the 
face of future ecological change. ResKuh, officially known as “Resource optimization 
and development of sustainable livestock systems in the Upper Rhine region,” is a 
European project co-funded through Interreg. Its goal is to enhance the resilience 
(“Res”) of the bovine (“Kuh” in German) sector in the Upper Rhine region concerning 
resource management and farm sustainability.

The project focuses on five key areas of animal husbandry, each with its unique 
challenges: pasture and meadow management, energy management, water 
management, reduction of greenhouse gas emissions, and animal welfare. The project 
area covers the Upper Rhine region with Alsace in France, Baden in Germany and the 
High Jura in Switzerland. Five research groups consisting of experts from the three 
countries and from different institutions are working in the five areas mentioned before. 
Each group will develop a methodology to perform diagnoses in pilot farms of the three 
countries, like the monitoring of the grass growth in pastures, a carbon diagnosis of the 
CO2 emissions, a diagnosis of the atmosphere in the stables or the monitoring of the heat 
stress in dairy cows. The collected data will serve as basis to produce various outputs 
illustrating the challenges of climate change for the bovine sector and the development 
of relevant solutions to improve the sustainability of the farms. The project ResKuh aims 
to provide tools and methods to help the farmers in maintaining the resilience of their 
farms in the face of climate change, as well as in mitigating their own impact on global 
warming. Sharing skills, knowledge, and methods of experts from research, training 
and consultancy across the whole Upper Rhin region throughout this project will help 
to achieve the above-mentioned goals, �while also promoting international research 
and cooperation between regions affected by the same problems.

The aim of the project is to support livestock farms in the Upper Rhine region in switching 
to a more sustainable way of farming, by  using scarce resources more efficiently and 
preserving the cultural landscape of this area while also achieving climate-neutral food 
production wherever possible.  

The planned measures are divided into two axes:

1.	 Increasing the resource efficiency of dairy farms as an adaptation to climate change 
in two packages of measure improved management of water used on meat and 
milk producing farms (drinking water and water used in production processes), 
firstly by reducing water consumption, but also by examining water supply options.

•	 introducing innovative grassland and pasture management adapted to climate 
change in practice, both through the selection of suitable resistant grass varieties 
and adapted fertilization; in both cases taking biodiversity into account. Another 
point is the planting of hedges and trees to prevent the grassland from drying out 
quickly due to wind and sunlight, and through more efficient use of local fodder.

2.	 Increase environmental protection and improve the sustainability of dairy farms. 
This objective is to be achieved through three packages of measures:

Material and 
methods
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•	 improving animal welfare and health through better housing conditions (buildings, 
ventilation) and through innovative data analyses and studies for breeding robust 
and resilient animals that can better adapt to a more difficult climate;

•	 supporting livestock farms in improving their carbon footprint by reducing 
greenhouse gases (GHG) emissions both in production and through the various 
possibilities of CO2 storage, as well as by reducing nitrogen in feeding;

•	 transition to energy self-sufficiency to limit energy consumption and increase 
energy production on farms, e.g. by utilizing animal excrement or using a 
photovoltaic (PV) system to generate energy.

The five international research groups are as followed:

Extreme heatwaves and the associated water shortages could jeopardise livestock 
farming (Doreau et al., 2012) in the Upper Rhine region. Groundwater levels are falling 
and the availability of water is becoming increasingly scarce (Brown et al., 2019), even 
though it is an important resource for livestock farming. In mountainous areas, livestock 
farmers are already facing water supply problems. Therefore, one of the objectives 
of this working group is to help farms identify and quantify the different consumptions 
of water in order to develop measures to improve their water management and 
optimize consumption by carrying out diagnoses and finding common solutions. The 
diagnoses will be carried out using a common methodology and a common tool for 
the project area. It is therefore possible to quantify the amount of water used in the 
commercialized products and to sensitize livestock farmers to consider the issue of 
water in their production cycles. The issue of water supply will also be analyzed, as 
this is an important issue for the animals, especially in situations of heat stress, as well 
as water quality. As part of this working group, literature research on solutions (e.g. 
use of different water sources) and an inventory of practices already implemented by 
livestock farmers will be carried out.

Global warming, with more intense dry spells combined with high temperatures, is 
affecting pastures by altering grass growth, composition, and yield (Wu et al., 2021). 
It is imperative for farmers to adapt their practices to ensure sustainable management 
and sufficient forage production for cattle. The aim is to develop recommendations 
for the management of meadows and pastures regarding drought, biodiversity, and 
climate protection. This will be achieved through the joint development of a protocol 
for measuring grass growth, as well as by analysing the quality of the harvest.

Global warming has a major impact on animals. For cows, the ideal outside temperature 
is between -5°C and 18°C. When temperature and humidity become high, cows begin 
to suffer from heat stress and are no longer able to dissipate their body heat efficiently 
(Atrian and Shahryar, 2012; Huber and Gulledge, 2011). To ensure the well-being and 
productivity of the animals and thus the sustainability of the farms, it is important to 
work on mitigation measures to avoid this heat stress as far as possible and to adapt 
the herd towards periods of heat in the best possible way. One possibility is to improve 
the conditions within the stables by adapting them for a better air circulation to reduce 
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the THI level within the building, thus reducing heat stress for the cows. In particular, 
the ventilation of the stables is a critical point to monitor to achieve the best possible 
climate in the buildings (West, 2003).

Another approach will be to analyse the heat stress and resistance of the animals for 
a selection aid.

The use of energy is essential for the smooth running of livestock farms (Benoit and 
Mottet, 2023). However, given the current economic, political, and climatic context, 
it is essential to work on reducing energy consumption to lower it. Whether it is to 
protect the environment or to ensure the continuity of its business, farms should aim 
at lowering their energy consumption as energy resources are becoming increasingly 
scarce, limited, and expensive (Kreps, 2020). For this reason, this project plans to work 
on the creation or acquisition of an energy diagnostic tool that can be shared across 
the various project areas. Indeed, there is currently no common energy assessment 
tool adapted to the diagnosis of farms in France, Germany, and Switzerland.  This 
diagnostic tool will make it possible to identify and quantify the different sources of 
energy consumption and to work on adjustments and recommendations to reduce 
energy consumption. Possible alternatives for greener and more autonomous energy 
production will also be analysed.

Agriculture and even more specifically livestock farming contribute to the global GHG 
emissions (Reisinger and Clark, 2018), thus livestock farms should try to reduce 
their carbon emissions. Therefore, it is necessary to use a carbon diagnosis tool to 
identify greenhouse gas emission and work on recommendations to reduce them. 
In Alsace, the Chamber of Agriculture uses the CAP’2ER tool, as does AGRIDEA in 
Switzerland. As part of a previous project KLIMACO, various carbon diagnosis tools 
were tested and compared. The results show that the CAP’2ER tool is one of the best, 
although the translation and utilization for Germany and Switzerland is not yet optimal. 
However, to obtain comparable data for the project area, the use of the CAP’2ER tool 
is recommended, which is why this tool will be translated in German and optimized for 
the German and Swiss regions.

Throughout this international cooperation and the work of the five different groups 
mentioned, the project ResKuh aims at develop tools, methods and references for 
farmers to adapt their farm management towards the challenges imposed by climate 
change upon agriculture and more specifically, upon livestock farming in the Upper 
Rhine region. As mentioned by the sustainable development goals of the United 
Nations (UN General Assembly, 2015), the resilience of agriculture will be a key point 
for the improvement of many goals such as “Food security and nutrition”, “Sustainable 
consumption and production” or “Ecosystems and biodiversity”, which is why such 
development projects are paramount.

Group “Energy 
management”

Group “Reduction of 
GHG emissions”
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Using the Automatic Milking System (AMS) can increase milk yield and reduce labor, 
but the impact of AMS on the milking behaviour of cows in tropical regions like Taiwan, 
as well as its effect on the quality of farm raw milk, has not been thoroughly explored. 
Free Fatty Acids (FFAs) in milk are considered one of the indicators of milk quality, 
and an increase in FFAs can lead to off-flavours and spoilage in dairy products. This 
study examines the FFA content in individual cow’s milk from different milking systems 
and investigates the influence of lactation stages and milking frequency on FFAs in 
raw milk. The experiment monitored milk samples collected from the Conventional 
Milking Parlour (CMP) and the AMS from 2021 to 2022, totalling 2,936 and 1,726 
samples respectively. The FFA content in these samples was measured using Fourier 
Transform Infrared Spectroscopy (FTIR). The results show that the milk from cows using 
the AMS had significantly higher FFAs (1.17 mmol/100g milk fat, P < 0.01) compared 
to those using CMP (0.88 mmol/100g milk fat). The FFA levels in the early stage of 
lactation (0.82 mmol/100g milk fat) were significantly lower (P < 0.01) than in the mid 
(1.10 mmol/100g milk fat) and late stages (1.17 mmol/100g milk fat) of lactation. When 
comparing different milking frequencies, cows milked 2, 3, and more than 4 times a 
day in the AMS had FFAs of 0.89, 1.09, and 1.15 mmol/100g milk fat respectively, 
with the FFAs in milk from cows milked twice a day significantly lower (P < 0.01) 
than those milked 3 times or more. This study indicates that the difference in FFAs 
between AMS and CMP in Taiwanese farms is particularly evident in the early stages 
of lactation, which helps in further investigating the physiological changes in cows 
during this period. The study confirms that the use of AMS in Taiwanese farms affects 
milk quality, including cow-related factors and other management aspects. Although 
the introduction of AMS may initially impact parameters related to milk quality, these 
effects may reduce or disappear as the lactation stage progresses, the cows adapt, 
and milk volume increases. Additionally, farm managers and dairy farmers need to 
pay special attention to the cleaning and maintenance of AMS, as well as the proper 
cooling of raw milk, to maintain high-quality milk.

Keywords: free fatty acids, milk quality, automatic milking system, conventional 
milking parlour. 
Presented at the ICAR Anual Conference 2024 in Bled at the Session 6: Evaluation 
and presentation of new parameters in herd management for dairy farms

Abstract



248

Assessing the impact of AMS on milk free fatty acid

Proceedings ICAR Conference 2024, Bled

Using the Automatic Milking System (AMS) can increase milk yield and reduce labour, 
but the impact of AMS on the milking behaviour of cows in tropical regions like Taiwan, 
as well as its effect on the quality of farm raw milk, has not been thoroughly explored. 
Free Fatty Acids (FFAs) in milk are considered one of the indicators of milk quality, and 
an increase in FFAs can lead to off-flavours and spoilage in dairy products. Therefore, 
it is important to assess the impact of AMS on the FFA content in milk in order to 
understand its effect on milk quality in Taiwanese farms.

In Taiwan, dairy farms have increased their herd size, but labour shortages and aging 
are causing problems. These issues could be resolved by using an automatic milking 
system (AMS). Mechanization and automation will be the future management model 
for dairy farms. This study examines the FFA content in individual cow’s milk from 
different milking systems, and investigates the influence of lactation stages and milking 
frequency on FFAs in raw milk. 

The experiment monitored milk samples collected from the Conventional Milking Parlour 
(CMP) and the AMS from 2021 to 2022, totaling 2,936 and 1,726 samples respectively. 
The FFA content in these samples was measured using Fourier Transform Infrared 
Spectroscopy (FTIR). Recording each day’s milk production, milking equipment used, 
stage of lactation, and milking process. 

Statistical analysis was conducted using a mixed-effects model to assess the impact of 
milking system, lactation stage, and milking frequency on the free fatty acid content in 
milk. The milking system, lactation stage (early, mid, and late), and milking frequency 
(2 times, 3 times, and more than 4 times a day) were considered as fixed effects. 
Individual cows were included as random effects to account for the repeated measures 
on the same cow.
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Figure 1. Free fatty acid (FFA) levels (mean ± standard error, mmol/100g fat) for automatic 

milking system (AMS, solid line) and conventional milking parlour (CMP, dashed line) 
over 15 days intervals through the entire 305 days of lactation. 

 
 
 
 

Figure 1. Free fatty acid (FFA) levels (mean ± standard error, mmol/100g fat) for automatic 
milking system (AMS, solid line) and conventional milking parlour (CMP, dashed line) over 15 
days intervals through the entire 305 days of lactation.
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Results
 

Table 1. Least squares means and P-values of fixed effects in the statistical analysis of free fatty acid 
(FFA) concentration in milk. 
 

Item Group FFA 
(mmol/100g milk fat) P value 

Milking system AMS 1.17 ± 0.04a <0.0001 
CMP 0.88 ± 0.05b 

Lactation stage Early 0.82 ± 0.05a <0.0001 
Middle 1.10 ± 0.04b 
Late 1.17 ± 0.05b 

Milkings Control 0.97 ± 0.03ab <0.01 
2 0.89 ± 0.04b 
3 1.09 ± 0.05a 
4+ 1.15 ± 0.08a 

Milking system × Lactation stage AMS × Early 1.08 ± 0.07ab <0.05 
AMS × Middle 1.23 ± 0.06a 
AMS × Late 1.20 ± 0.06ab 
CMP × Early 0.55 ± 0.11c 
CMP × Middle 0.97 ± 0.06b 
CMP × Late 1.13 ± 0.06ab 

Lactation stage × Milkings  Early × Control  0.99 ± 0.08bcd <0.05 
Early × 2  0.61 ± 0.09d 
Early × 3  0.77 ± 0.10cd 
Early × 4+ 0.89 ± 0.14bcd 
Middle× Control  0.97 ± 0.05bcd 
Middle× 2  1.03 ± 0.07abc 
Middle× 3  1.26 ± 0.08ab 
Middle× 4+ 1.16 ± 0.12abc 
Late × Control  0.95 ± 0.05bcd 
Late × 2  1.05 ± 0.05abc 
Late × 3  1.26 ± 0.08ab 
Late × 4+ 1.41 ± 0.16a 

a–d Groups that do not share a common superscript letter are significantly different in their FFA levels (P<0.05). 
AMS: automatic milking system; CMP: conventional milking parlour. 
Early, Middle, and Late corresponds to 7 to 100 DIM (days in milk), 101 to 200 DIM, and 201 to 305 DIM, respectively. The 2, 
3, and 4+ represent daily milking frequencies with AMS, while Control refers to twice daily milking using CMP. 

Table 1. Least squares means and P-values of fixed effects in the statistical analysis of free fatty acid (FFA) 
concentration in milk.

The FFA content in milk samples was analyzed as the response variable, and the 
differences in FFA levels between the milking systems and across lactation stages 
and milking frequencies were evaluated using ANOVA. Post-hoc pairwise comparisons 
were conducted to assess specific differences between the levels of each factor. All 
analyses were performed using the SAS statistical software, and the significance level 
was set at alfa = 0.05.

The difference between AMS and CMP for FFAs across days in milk is presented 
in Figure 1. Cows milked with AMS produced milk with greater FFAs content across 
lactation. The greatest difference between AMS and CMP was detected in 140 days 
after calving, whereas the smallest differences were observed after 200 days in milk. 
The milk from cows using the AMS had significantly higher FFAs (1.17 mmol/100g 
milk fat, P < 0.01) compared to those using CMP (0.88 mmol/100g milk fat) (Table 1). 
The FFA levels in the early stage of lactation (0.82 mmol/100g milk fat) were 
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significantly lower (P < 0.01) than in the mid (1.10 mmol/100g milk fat) and late stages 
(1.17 mmol/100g milk fat) of lactation. 

When the milking frequencies of cows were compared, it was observed that cows 
milked twice a day had lower levels of FFAs in their milk fat (0.89 mmol/100g) compared 
to those milked three times per day (1.09 mmol/100g) and more than four times per 
day (1.15 mmol/100g) in an AMS system. This difference was found to be statistically 
significant with a p-value of less than 0.01. The results of the study indicate that the 
use of an automatic milking system can have a significant impact on the FFA.

In previous study (Marchi et al., 2017), cows milked with AMS produced milk with 
greater FFA content across lactation. The greatest difference between AMS and CMP 
was detected within the first 80 days after calving, whereas the smallest differences 
were observed after 260 days in milk. This result is similar to our study, the smallest 
differences were observed during the late lactation in both experiments.

In this study, FFAs content was greater (+0.29 mmol/100 g milk fat) in milk from 
cows milked in AMS than CMP. The results show a similar trend to previous studies. 
Marchi et al. (2017) indicates the FFAs content in milk in AMS is higher than in CMP 
by 0.16 mmol/100 g milk fat. FFAs are produced through the degradation of milk fat 
into glycerol and FFAs via lipolysis reactions. Cooling and mechanical treatments of 
milk can disrupt the membrane of fat globules, leading to an increase in FFAs levels. 
This increase in FFAs is primarily associated with higher milking frequency or shorter 
milking intervals (Klei et al., 1997; Justesen and Rasmussen, 2000). Wiking et al. 
(2019) indicated that when the milking interval was less than 585 minutes, FFA levels 
increase as the milking interval shortens. More frequent milking leads to lower milk 
yield per milking. This is because the increased frequency of milking results in a higher 
air-to-milk ratio in the pipeline, reducing the stability of milk fat globules (MFG). When 
milk is pumped or agitated, mixing with air occurs, causing MFG rupture upon collision 
with air bubbles. As a result, membrane material and core fat are released into the 
milk plasma when air bubbles collapse or merge. Additionally, low quarter milk yields 
are linked to elevated (FFA) levels (Rasmussen et al., 2006). Additionally, milk from 
cows milked more than twice daily tends to have larger fat globules, which are more 
susceptible to lipolysis compared to smaller fat globules. Wiking et al. (2006) stated 
that the increase in FFA content at higher milking frequencies in AMS is attributed to 
both biological and mechanical factors. However, biological factors may have a greater 
impact, as spontaneous lipolysis is heightened. These findings suggest that the use of 
an automatic milking system, combined with a higher milking frequency, may contribute 
to increased levels of FFAs in milk.

This study suggests that there is a noticeable disparity in free fatty acids between 
automated milking systems and conventional milking parlors in Taiwanese farms, 
especially during the initial phases of lactation. This finding opens up opportunities 
for delving deeper into the physiological transformations occurring in cows during this 
specific period. Furthermore, exploring these differences may provide insights into 
potential improvements or adjustments to enhance milk quality and overall efficiency 
within dairy farming operations.

The use of AMS in Taiwanese farms may have a long-lasting impact on milk quality. 
Certain cow-related factors and management aspects may continue to be affected 
even as cows adapt and milk volume increases. Furthermore, farm managers and 
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dairy farmers need to pay special attention to the cleaning and maintenance of AMS, 
as well as the proper cooling of raw milk, to maintain high-quality milk.
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The aim of this study was to develop a simplified tool for estimating Climate Change 
(CC) associated to milk production at farm level that can be easily used by farmers. 
An accurate environmental impact assessment of milk production is the first step to 
select the best mitigation strategies to make milk production greener. Most studies in 
this field use Life Cycle Assessment (LCA) to estimate various environmental impacts 
of milk production at the farm level. LCA is a robust method, although time consuming. 
However, the current need of the sector is to start extensive estimation of environmental 
impact of milk production in dairy farms, at least for the Climate Change (CC) category, 
to set up a starting point for measuring future improvements. The study was performed 
on 54 dairy cattle farms located in Northern Italy. A complete LCA analysis was 
performed, and some performance data were recorded in the last 3 years. The latter 
were retrieved from the national fertility database managed by the National Breeders 
Association of Holstein, Brown, and Jersey (ANAFIBJ, Cremona, Italy) and consisted 
of production, management, and fertility data (i.e. pregnant cows at 120 d, and milk 
sold per Livestock Unit, LU), and genetic indices (i.e. Health and Economic Index - IES, 
predicted Methane Emission Index - pCH4). On average, the number of lactating cows 
in the selected farms was 232.2 (min 56, max 817), Fat and Protein Milk production 
(FPCM) per lactation was 9591±1357 kg. The inclusion of soybean meal, in the ration 
of lactating cows, was on average 10.7±5.28%. The CC impact was estimated starting 
from IPCC 2019 equations for modelling CH4 and N20 emissions related to the on‑farm 
processes, while for off farm ones, data from databases were used (Agrifootprint 
and Ecoinvent). The EF 3.0 method was used for CC estimation. Average CC of the 
farms in the dataset was 2.00±0.31 kg CO2 eq/kg FPCM. Subsequently, multivariate 
analyses were performed using R and SAS software using CC, farm characteristics 
and performance data. The Principal Component Analysis (PCA) was performed to 
find a multidimensional relation between variables. 

With the aim to find an equation for estimating CC (CC_es) using few variables, easy 
to be collected at farm level, a linear model with stepwise selection was used. Starting 
from a collinearity test, variables with high VIF (Variance Inflation Factor) were excluded 
from the dataset. Stepwise procedure (Ordinary Least Squares, OLS) was used to 
select the best parameters for CC_es. Variables selected were presence of biogas, 
percentage of soybean meal in the ration, IES and CH4 indexes, age at first calving, 
pregnant cows at 120 d, and milk sold per LU. Adjusted R2 of the equation was 0.63. 
Validation of the equation was performed by randomly selecting 15 farms from the 
database 1,000 times to test the equation, and the average correlation coefficient 
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between CC_es and CC was 0.77. From PCA, CC resulted inversely related with biogas 
presence, percentage of replacement animals on total LU and percentage of cows 
pregnant at 120 days after calving. The last two parameters are linked with an efficient 
farm management, characterized by a limited ratio between unproductive (heifers and 
open cows) and productive animals and by fertility efficiency. The mitigation effect of 
the presence of biogas was very high. The IES index also showed negative correlation 
with CC_es, On the other hand, while increasing percentage of soybean meal in the 
ration resulted an increased value of CC_es. Fertility efficiency parameters i.e. pregnant 
cows at 120 d, and milk sold per LU were inversely proportional to CC_es.

Keywords: lca, tool, milk, cow, management, environmental impact. 
Presented at: Session 11 of ICAR 2024, Methane Emission‐Free Communications: 
Genetics, Environmental, and Life Cycle Assessment Studies   

In literature a generally accepted method for estimating the environmental impact of 
animal products on a global perspective is the Life cycle assessment (LCA), thanks to 
its power to include in a holistic assessment the environmental impacts of processes 
and products (Guerci et al., 2013). However, LCA represents a high time-consuming 
method, making it a method of difficult application in the field, especially for assisting 
farmers in identifying GHG mitigation strategies to be implemented at farm level. For 
this reason, a simplified tool for the evaluation of Climate Change (CC), that considers 
all the farm management aspects, together with genetic and phenotypic parameters, 
related to animal and farm efficiency, may be useful for improving the environmental 
sustainability of the milk production sector. 

The study was performed on 54 dairy cattle farms located in Northern Italy. A complete 
LCA analysis was performed, and some performance data were recorded in the last 
3 years. The latter were retrieved from the national fertility database managed by the 
National Breeders Association of Holstein, Brown, and Jersey (ANAFIBJ, Cremona, 
Italy) and consisted of production, management and fertility data (i.e. pregnant cows 
at 120 d, and milk sold per Livestock Unit, LU), and genetic indices (i.e. Health and 
Economic Index - IES, predicted Methane Emission Index - pCH4).

The goal of this LCA study was to quantify the CC of 1 kg of fat and protein corrected 
milk (FPCM), that was used as functional unit. At farm level, the allocation was 
performed between milk and meat, using a physical method (IDF International Dairy 
Federation, 2015).  System boundaries considered were from cradle to farm gate, and 
all the inputs and output involved in the productive processes were considered. For the 
assessment, primary data collected at farm were used as much as possible. Secondary 
data from databases (Ecoinvent and Agri-footprint databases) and proxy were also used. 
Emissions of greenhouse gases in air were estimated by using IPCC 2019 guidelines. 
After classification, characterization was performed through EF 3.0 method. The life 
cycle impact assessment was performed by using the software SimaPro V 8.3.
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The complete data set was analysed using SAS 9.4 (2012; SAS Institute Inc., Cary, 
NC), computing descriptive statistic  (Proc MEANS). Multivariate analyses were 
performed using SAS software 9.4 (2012; SAS Institute Inc., Cary, NC), using CC, farm 
characteristics and performance data. A Principal Component Analysis (PCA, Proc 
PRINCOMP) was performed to find a multidimensional relation between variables. With 
the aim to find an equation for estimating CC (CC_es) using few variables, easy to be 
collected at farm level, a linear model with stepwise selection was used. Starting from 
a collinearity test, variables with high VIF (Variance Inflation Factor) were excluded 
from the dataset. Stepwise procedure (Ordinary Least Squares, OLS) was used to 
select the best parameters for CC_es. Validation of the equation was performed by 
randomly selecting 15 farms from the database 1,000 times to test the equation, and 
the average correlation coefficient between CC_es and CC was calculated. 

The results of summary statistics performed on 54 dairy cattle farms of Northern Italy 
are shown in Table 1. 

On the average, the number of lactating cows in the selected farms was 232, Fat and 
Protein Milk production (FPCM) per lactation was 9591 kg, with an average percentage 
of fat and protein of 3.83 and 3.40, respectively (Table 1). The inclusion of soybean 
meal, in the ration of lactating cows, was, on the average 10.7%. Average values 
collected for IES and CH4 indexes were 161 and 100, respectively. Age at first calving 
was, on the average, for the 54 farms of the sample, 26.9 months, while percentage 
of pregnant cows at 120 d was, on the average 58.3%. Average value of milk sold per 
LU was 6239 kg (Table 1). 

Average CC of the farms in the dataset was 2.00±0.31 kg CO2 eq/kg FPCM.

In Figure 1 results of PCA are shown. 

From PCA (Figure 1), CC resulted inversely related with biogas presence, percentage 
of replacement animals on total LU and percentage of cows pregnant at 120 days 
after calving. The last two parameters are linked with an efficient farm management, 
characterized by a limited ratio between unproductive (heifers and open cows) and 
productive animals and by fertility efficiency. IES index also resulted to be inversely 
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Table 1. Summary of descriptive statistic. 
 

Variable Unit Mean Std Min Max 
Lactating cows n 232 186 56.0 817 
FPCM1 per lactation kg 9591 1357 6754 13284 
Fat % 3.83 0.23 3.28 4.23 
Protein % 3.40 0.12 3.02 3.70 
Soybean meal in the ration % 10.7 5.28 0 22.5 
IES index2  161 159 -93.6 733 
CH4 index3  100 1.42 97.1 105 
Age at first calving month 26.9 2.47 23.0 34.7 
Pregnant cows at 120 d % 58.3 9.25 37.0 73.0 
Milk sold per LU4 kg 6239 827 4494 8093 

1 FPCM, Fat and Protein Corrected Milk  
2  IES index, Health and Economic Index 
3 CH4 index, Methane Emission Index 
4 LU, Livestock Unit 
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related to CC. On the contrary, PCA highlighted a positive correlation between CC and 
age at first calving, number of lactations and length of lactation (Figure 1). 

Variables selected for the estimation of CC (CC_es) (Table 2) were presence of biogas, 
percentage of soybean meal in the ration, IES and CH4 indexes, age at first calving, 
pregnant cows at 120 d, and milk sold per LU. Adjusted R2 of the equation was 0.63, 
and the average correlation coefficient between CC_es and CC was 0.77. 

The mitigation effect of the presence of biogas was very high. The IES index also 
showed negative correlation with CC_es, On the other hand, while increasing 

Figure 1. Results of PCA.

 
 

 
1 FPCM, Fat and Protein Corrected Milk  
2  IES index, Health and Economic Index 
3 CH4 index, Methane Emission Index 
4 LU, Livestock Unit 
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Table 2. Variables selected for the estimation of CC.

 
 

Table 2. Variables selected for the estimation of CC. 
 

Variable 
Biogas 

Percentage of soybean meal in the ration 
IES index1 
CH4 index2 
Age at first calving 

Pregnant cows at 120 d 
Milk sold per LU3 

1  IES index, Health and Economic Index 
2 CH4 index, Methane Emission Index 
3 LU, Livestock Unit 
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percentage of soybean meal in the ration resulted an increased value of CC_es. 
Fertility efficiency parameters i.e. pregnant cows at 120 d, and milk sold per LU were 
inversely proportional to CC_es. 
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Anthelmintic resistance is increasingly present in French sheep flocks. The issue is 
particularly acute in dairy sheep, as the only anthelmintic drug still available during the 
lactating period without milk withdrawal time is eprinomectin, a macrocyclic lactone. 
In the Pyrenean dairy sheep breeds, for which the breeding system is based on 
pasture grazing under an Atlantic climate, some flocks are in dire straits with no more 
efficiency of the treatments against the gastrointestinal nematodes (GIN) during the 
lactating period. Management of GIN in France aims at an integrated control, based 
on a combination of solutions. It is advocated that treatment should be targeted and 
selective, grazing should be managed to limit the sources of contamination and 
resistance of sheep should be increased through genetic selection.

This paper focuses on the genetic lever and describes the process undertaken by the 
Pyrenean dairy sheep organisations over the last decade to implement a selection 
for resistance to parasites in the Blond-Faced Manech and Basco-Béarnaise breeds. 
Phenotyping of resistance to GIN has been achieved since 2008 by experimental 
infection of the rams entering the insemination centre. The protocol is based on two 
successive infections with L3 larvae of Haemonchus contortus, separated by a 15‑day 
recovery period. Faecal egg count (FEC) one month after each infection and the variation 
of packed cell volume (ΔPCV) between the time of infection and one month afterwards 
were measured. FEC and ΔPCV may be considered as indicators of, respectively, the 
resistance to parasites and the resilience of the animal. 1,826 Blond‑Faced Manech 
rams and 520 Basco-Béarnaise rams have been phenotyped for this trait since 2008. 
All of them are genotyped. The estimation of genetic parameters of FEC and ΔPCV 
at each infection shows that FEC is moderately heritable while ΔPCV  isplays a lower 
heritability. The genetic correlations between FEC and ΔPCV are quite high, meaning 
that the more resistant rams are also the more resilient. The genetic correlations 
between FEC and ΔPCV on the one side, and the traits currently under selection 
(milk, fat and protein, somatic cell count, udder morphology) on the other side are low, 
close to zero. Consequently, the inclusion of resistance to parasites in the breeding 
objective would not hamper too strongly the efficiency of selection on current traits. 
A genomic evaluation of FEC and ΔPCV was performed in 2022 and the breeding 
organisation of the Blond-Faced Manech and the Basco-Béarnaise breeds decided to 
include resistance and resilience to parasites in the breeding criteria of these breeds. 
FEC and ΔPCV have been combined in a composite sub-index related to parasite 
resistance and resilience. This sub-index was then combined with the current selection 
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index to produce a new Total Merit Index that is now used to select the rams in the 
breeding program.

Keywords: dairy sheep, resistance to parasites, breeding objective, genetic parameters 
Presented at the ICAR Anual Conference 2024 in Bled at the Session 7: Breeding for 
agroecological transition in sheep and goats.

Gastrointestinal nematodes (GIN) are ingested by sheep while grazing. They 
cause significant economic losses (mortality, milk production losses, direct costs of 
anthelmintics pharmaceuticals). The ecotoxicity of some anthelmintics (e.g. macrocyclic 
lactones) can provoke undesired effects on non-targeted fauna, coprophagous insects 
of the pastures mainly (Verdú et al, 2018). Moreover, the important adaptation capacity 
of GIN has made them develop anthelmintic resistances (including multidrug resistance) 
which has been growingly evidenced over the last few years, leading to a true risk of 
therapeutic impasse (Jacquiet et al, 2024). For all these reasons, breeding for resistance 
to GIN in sheep is a relevant selection objective. 

However, we must have in mind that the genetic selection to increase the resistance/
resilience of the host is only one of the pillars of the integrated control of GIN, along 
with the elimination of the GIN (use of targeted selective treatments, discovery of new 
molecules) and the drying up of the sources of contamination (e.g. through a better 
management of pastures and grazing). Use of multiple tools among the integrated 
parasite management toolbox is the right way to efficiently fight GIN infections (Jacquiet 
et al, 2024).

In France, the Pyrenean dairy sheep breeds (Manech and Basco-Béarnaise breeds), 
raised mainly outdoors in the western part of the Pyrenean mountains, close to 
the Atlantic Ocean are subject to severe natural GIN infections due to production 
systems based on grazing associated to a mild and wet climate. Therefore, the breed 
organisation of these breeds pioneered in the implementation of genetic selection for 
resistance and resilience against parasitism in France.

While many countries and breeds, especially in Australia, New Zealand, UK, Uruguay 
measure resistance to parasites in situation of natural infections on pastures (Morris 
et al, 2010; Woolaston and Windon, 2001; Ciappesoni et al, 2023, Cunha et al, 2024), 
an original design has been set up in France, based on a standardised protocol with 
controlled infections with Haemonchus contortus (Gruner et al, 2004a, Jacquiet et al, 
2015). This protocol is applied to young rams, never exposed to parasites, gathered 
in breeding/AI centres, which are genetically important because they are the future 
sires in the selection process. The objective of the protocol is to display differences 
between rams without hampering their fitness.

The figure 1 summarizes the principles of the standardised protocol and the different 
measures that are collected. It is based on two successive infections of a given and 
known dose of L3 of Haemonchus contortus (a hematophagous GIN). At the first 
infection, 3,500 doses of L3 are administered, and 5,000 at the second infection. At each 
infection, feces are collected 30 days after infection to measure Fecal Egg Count (FEC) 
through a coprological analysis (Jacquiet et al, 2011). A blood sample is also collected 
the day of the infection and 30 days after to measure packed cell volume (PCV), the 
purpose being to measure blood loss during infection. Rams are drenched between 
both infections. When the protocol is applied to meat sheep breeds, L3 doses may 
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vary depending on age of rams and how they respond to infection. In the case of the 
Pyrenean dairy sheep breeds (Red-Faced Manech – RFM and Basco-Béarnaise - BB), 
the protocol occurs when the rams are one-year-old, before their first use as AI rams. 
When the phenotyping protocol is applied, they have never known the pasture and 
are therefore naïve regarding parasites.

FEC are an indicator of the resistance to GIN, by assessing the capacity of the sheep 
to decrease the establishment, the development, the fecundity and the fitness of the 
worms. The variation of PCV between start and end of infection (ΔPCV) is an indicator 
of the resilience of the animal regarding the parasitic challenge. Besides, kinetics of 
PCV also allows to verify the fitness of the sheep after each infection and thus monitor 
the well-being of the animals.

Figure 1. Protocol of experimental infestation (from Jacquiet et al, 2015).

 

 

Figure 1. Protocol of experimental infestation (from Jacquiet et al, 2015) 
  

Figure 2. Number of rams submitted to the protocol of phenotyping over the years.
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FEC is the commonly used criterion worldwide to measure host resistance to parasites. 
As it is time-consuming and costly to measure, targeting rams gathered in collective 
centres makes the selection process more cost-effective, money and time wise. The 
use of Haemonchus contortus is relevant for the following reasons: (i) it is a pathogenic 
and thermophile GIN; (ii) it is the most prevalent species in south-western France; 
(iii) most of the time, this species is concerned in case of resistance to drugs. In any 
case, literature has shown a very high genetic correlation (≈ 1) between resistance to 
different species of GIN (Gruner et al, 2004a). Finally, a very high genetic correlation 
(≈ 0,9) has been found between natural infections and experimental infections (Gruner 
et al, 2004b).

The first protocol of phenotyping in the Pyrenean breeds was implemented in 2008. 
Since then, new rams have been phenotyped almost every year. Finally, phenotypes 
are available for 1,826 RFM and 520 BB rams in 2024. This dataset was used for 
genetic analyses (Figure 2).

The traits used in genetic analyses are the following:

•	 The square root of FEC at first and second infection (both infections being considered 
as a different trait): FEC1 and FEC2. Such a transformation resulted in more 
symmetrical distributions.

•	 The variation of PCV between start and end of infections (both infections being 
considered as a different trait): ΔPCV1 and ΔPCV2 (ΔPCVi=PCVi[init] – PCVi[end]).

Genetic parameters of resistance and resilience traits, as well as their standard errors, 
were estimated using the restricted maximum likelihood estimation with the VCE 
package. The model used is the following:

Yijk = μ + Pi + Aj + Rk + eijk

Where Yijk is the dependent variable (FEC1, FEC2, ΔPCV1 and ΔPCV2), μ is the 
population mean, Pi is the fixed effect of protocol i (representing the contemporary 
group, one per year), Aj is the fixed effect of age j of the ram, Rk is the additive genetic 
random value of the ram k and eijk is the random residual effect. As the rams were 
submitted to only one protocol in their lifetime, there were no repetition and therefore 
no permanent environmental random effect.

The table 1 presents the genetic parameters obtained in Red-Faced Manech.

All heritabilities are significantly different from zero. FEC are moderately heritable, 
with a higher heritability of FEC at the second infection (0.35 vs 0.20). ΔPCV have a 
lower heritability (0.12 and 0.14). Genetic correlations across both infections are high 
(more for FEC than for ΔPCV), but without being the same trait. Genetic correlations 
are high between resistance and resilience, especially within infections: the most 
resistant animals are also the most resilient. These parameters show that selection 
is feasible. The parameters in BB (not shown here) follow the same pattern, yet with 
some differences (there is no higher heritability of FEC in infection 2 in BB). These 
results are consistent with those estimated previously (Aguerre et al, 2022).

Genetic 
parameters and 
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gastrointestinal 
nematodes and 
resilience traits
Computation of traits

Genetic parameters
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The genetic evaluation is performed using the same model as for genetic parameters. 
Until 2022, the evaluation was polygenic. From 2023 onwards, we have run a genomic 
evaluation (all the rams phenotyped are also genotyped), enabling the inclusion of 
resistance and resilience to parasites in the genomic pre-selection step of young rams, 
simultaneously with other traits.

EBV’s of elementary traits (FEC1, FEC2, ΔPCV1 and ΔPCV2) are provided to the 
breed organisation. In addition, composite indexes are also calculated and provided:

•	 -a FEC index combining both infections: FECindex = ¼ FEC1 + ¾ FEC2, weights 
of ¼ and ¾ reflecting the difference of heritability across infections.

•	 -a ΔPCV index combining both infections: ΔPCVindex = ½ (ΔPCV1 + ΔPCV2), 
weights of ½ reflecting the same heritability across infections.

-a so-called parasitism index combining resistance and resilience: PARASITISMindex 
= ¾ FECindex + ¼ ΔPCVindex. The weights were chosen by the breed organisation, 
with the intention of giving a significant weight to resilience, while keeping a higher 
(conservative) weight for resistance, arguing that FEC is the most universal indicator 
worldwide. However, which weights should be given to resistance and resilience is a 
key question. The answer could be updated in the future, according to new scientific 
results or following new decisions from the breeding organisation.

To have a quick glance at the background on the selection in the Pyrenean dairy sheep 
breeds, we must have in mind the following statement:

•	 the breeding programs of the RFM and BB breeds have been shifted towards 
genomic selection since 2017, with a reference population reaching 3,300 rams in 
RFM and 1,100 rams in BB. They are efficient programs, generating in a genetic 
gain (expressed in genetic standard deviation of the selection index) reaching 0.16 
in RFM and 0.15 in BB (Astruc et al, 2022).

•	 the selection criteria include in both breeds fat and protein yield, fat and protein 
content, somatic cell count, udder morphology traits.

•	 high level of anthelmintics resistance in the area has made the breeders fully aware 
of the importance of increasing resistance/resilience to GIN. Yet there is a strong 
inclination to find the right compromise between currently selected traits and novel 

Table 1. Genetic parameters and standard errors of estimation of 
Fecal Egg Count (FEC) and variation of packed cell volume (ΔPVC) 
in Red-Faced Manech at infection 1 and 2. Heritabilities are on the 
diagonal (bold characters), genetic correlations above the diagonal and 
phenotypic correlation below the diagonal.

 

Table 1. Genetic parameters and standard errors of estimation of Fecal Egg Count (FEC) and variation of 
packed cell volume (ΔPVC) in Red-Faced Manech at infection 1 and 2. Heritabilities are on the diagonal 
(bold characters), genetic correlations above the diagonal and phenotypic correlation below the diagonal. 
 

 FEC1 FEC2 ΔPCV1 ΔPCV2 
FEC1 0.20 ± 0.04 +0.82 ± 0.05 +0.96 ± 0.05 +0.47 ± 0.10 
FEC2 +0.37 0.35 ± 0.05 +0.70 ± 0.07 +0.79 ± 0.10 
ΔPCV1 +0.30 +0.14 0.12 ± 0.03 +0.40 ± 0.14 
ΔPCV2 +0.15 +0.43 +0.06 0.14 ± 0.01 
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parasite-related traits. Hence, the genetic correlations between all the traits were 
a key indicator to consider.

Genetic correlations between traits as well as their standard errors, were estimated 
using the restricted maximum likelihood estimation with the VCE package. The model 
used is the bivariate model, without repetitions, the fixed effects being those used in 
the genetic evaluation (described above for FEC and ΔPCV, described in Aguerre et 
al, 2022 for currently selected traits). We present in the table 2 the genetic correlations 
between FEC1, FEC2, ΔPCV1, ΔPCV2 on the one hand, milk yield (MY), fat and 
protein content (FC and PC), somatic cell score (SCS), teat angle (TA), udder depth 
(UD) on the other hand.

Most correlations are close to zero. As the size of the dataset is quite small, half of 
the correlations are not significantly different from zero. Bearing in mind this limit and 
looking at the general patterns, whether for resistance or resilience traits, favourable 
correlations are somewhat balanced with unfavourable correlations. Aguerre et al 
(2022) found correlations slightly different, mainly due to a smaller dataset and the high 
standard error of estimation. We can state that the genetic correlations are globally low 
in RFM. Therefore, selecting for resistance and resilience to GIN challenges would not 
jeopardise the efficacy of the selection on other traits. The smaller size of the dataset 
in BB does not allow to give consistent results.

In a complementary approach, we calculated the Pearson correlation coefficient 
between current total merit index (TMI) and the parasitism index combining resistance 
and resilience, for 663 young rams born in late 2023 and genotyped for the genomic 
pre-selection. The correlation was at the very low level of 0.04, suggesting neither 
favourable nor unfavourable relationship, confirming what we observed on elementary 
traits.

To define a new TMI including resistance and resilience to GIN, we built a composite 
index as follows:

TMInew = TMIcurrent + k * PARASITISM, with:

Genetic correlations 
between traits 
included in the 
current selection 
index and traits of the 
parasite index

Table 2. Genetic correlations and standard errors of estimation in Red-Faced Manech between Fecal Egg 
Count (FEC) and variation of packed cell volume (ΔPVC) at infection 1 and 2, and 6 major traits included in 
the current total merit index. 

 
Table 2. Genetic correlations and standard errors of estimation in Red-Faced Manech between Fecal Egg 
Count (FEC) and variation of packed cell volume (ΔPVC) at infection 1 and 2, and 6 major traits included in 
the current total merit index.  
 

 FEC1 FEC2 ΔPCV1 ΔPCV2 
Milk yield -0.20 ± 0.11 * -0.03 ± 0.07 -0.06 ± 0.17 -0.07 ± 0.13 
Fat content 0.12 ± 0.13 0.10 ± 0.09 * 0.06 ± 0.17 0.10 ± 0.13 
Protein content -0.26 ± 0.12 * -0.19 ± 0.08 * -0.21 ± 0.17 * -0.02 ± 0.13 
Somatic Cell Score -0.17 ± 0.12 * -0.12 ± 0.09 * -0.48 ± 0.23 * -0.09 ± 0.14 
Teat angle -0.17 ± 0.11 * 0.04 ± 0.08 -0.08 ± 0.19 -0.22 ± 0.12 * 
Udder depth 0.12 ± 0.11 * 0.04 ± 0.08 0.41 ± 0.19 * 0.11 ± 0.13 

Sign * spots correlations that are significantly different from zero. Correlations are coloured in green when favourable, in orange 
when unfavourable. 
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-	 TMIcurrent is the current TMI including dairy traits (60% in RFM; 65% in BB), SCS 
(20% in RFM; 17.5% in BB) and udder morphology (20% in RFM; 17.5% in BB)

-	 PARASITISM defined as above: PARASITISM = ¾ FECindex + ¼ ΔPCVindex

We made k vary from 0 to 1000 and we applied a selection of 25% on a set of young 
rams submitted to genomic preselection, based on TMInew. We then plot the evolution 
of TMIcurrent and PARASITISM of the selected rams against k. The results were 
discussed with the breeding organisation that choose the k value corresponding to 
their desired compromise between not losing too much on TMIcurrent while sufficiently 
improving PARASITISM. The re-ranking of the rams was also accounted for. The k 
chosen resulted in a loss of genetic progress on TMIcurrent of 5% in RFM and 8% in 
BB, which is weak. The gain on PARASITISM is equivalent to a decrease of 200 eggs 
per gram in the selected rams of each cohort. In terms of percentage in the TMInew, 
the weight of PARASITISM is 24% in RFM and 35% in BB.

This new TMI was used for the first time at the genomic preselection step of the young 
rams born in late 2023. These rams will be used at AI in 2025.

Breeding for resistance to parasites became necessary in the Western Pyrenean 
breeds with regards to the situation on anthelmintic resistance in the area. This is in 
line with the strong willingness of the breeding organisation to select for resilience and 
generate animals more adapted to agroecological transition (towards less chemical 
treatments) and to global warming (Haemonchus contortus is a thermophile species). 
Yet the selection will be effective in the mid to long term. For this reason, management 
of GIN should integrate a combination of solutions. Besides genetic selection to increase 
resistance of sheep, it is advocated that treatment should be targeted and selective, 
grazing should be managed to limit the sources of contamination. Beyond the case of 
Pyrenean breeds, the Lacaune breed, which has also been confronted to anthelmintic 
resistance these last years, will start phenotyping resistance and resilience to GIN 
in late 2024, allowing to include these traits in the selection objective within 4 years.

The SMARTER project (Horizon 2020 research and innovation program No. 772787) 
produced in 2023 a deliverable on recommendations to phenotype resilience. It included 
resistance/resilience to parasites, with the different ways of phenotyping (traits, proxies, 
experimental vs natural infection). This deliverable was intended to be translated 
into ICAR guidelines. To include these recommendations into a new section of ICAR 
guidelines constitutes a major objective of the Sheep-Goat-Camelid WG.
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With 15,166 registered ewes (> 0.5 years) on 1,047 farms in 2022, Tyrol Mountain has 
the largest number of animals among the registered sheep breeds in Austria. Tyrol 
Mountain is a non-seasonal breed; in 2022, 10,351 lambings from 8,147 ewes were 
recorded (ÖBSZ, 2023). Official breeding values for Tyrol Mountain sheep in Austria 
were published for the first time in 2017. At the same time, genetic evaluations have 
been introduced for other sheep and goat breeds. For the mountain sheep breeds, 
genetic evaluation currently includes the traits age at first lambing, lambing interval, 
lambs born and lambs born alive (both maternal and paternal) and the fitness index 
based on these traits. However, longevity, one of the most important functional traits, is 
missing from the current breeding objectives. While survival analysis has long been the 
“state of the art”, especially in dairy breeding, many newly established routine genetic 
evaluations are based on linear models. Therefore, a genetic evaluation for a longevity 
related trait was developed for Tyrol Mountain, which can be implemented in routine 
breeding value estimation based on linear models. For this purpose, 5 cumulative 
periods from first lambing onwards were defined. The traits are the number of lambings 
in the periods 1, 2, 3, 5 and 8 years after the first lambing. The average number of 
lambings is 1.8 in the first year and 4.5 within 8 years, the maximum number of lambings 
after 8 years is 15. Apart from the random animal genetic effect, the evaluation model 
includes the fixed effects of age at first lambing, year-month, herd, and the random 
effect of herd-year. The last uncompleted period of living animals is considered by 
extrapolating their expected performance. All following periods are then set to missing 
for these animals. Estimated heritabilities for the 5 periods range from 0.03 (period 1) 
to 0.14 (period 8). Genetic correlations between traits are consistently high, ranging 
from 0.81 to 0.99. Period 3, i.e. the number of lambings within 3 years after the first 
lambing, is considered the target trait. The first official breeding values for longevity 
will be published in June 2024, along with new breeding values for conformation and 
a total merit index. 

Keywords: sheep, longevity, genetic parameters, breeding values.  
Presented at the ICAR Anual Conference 2024 in Bled at the Session 7: Breeding 
for agroecological transition in sheep and goats. 

A considerable variety of sheep breeds exists, which are adapted to different climatic 
conditions and/or are particularly suitable for different purposes. Accordingly, the 
Austrian Sheep and Goat Association (ÖBSZ, Österreichischer Bundesverband für 
Schafe und Ziegen) categorises the different sheep breeds into four groups, namely 
mountain sheep, land sheep, dairy sheep and meat sheep (ÖBSZ, 2013). Mountain 
sheep breeds account for the highest proportion of animals (>50% of herd book 
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ewes). These breeds are mainly kept in alpine regions, are non-seasonal, and are 
used mostly for lamb production, landscape management, and conservation grazing. 
Within this group, the Tyrol Mountain breed has the highest proportion of animals 
among the registered sheep breeds in Austria, with 15,166 registered ewes (> 0.5 
years) on 1,047 farms in 2022. In the same year, 10,351 lambs were recorded from 
8,147 ewes (ÖBSZ, 2023). 

In 2017, official breeding values for Tyrol Mountain sheep in Austria were published for 
the first time. In parallel, genetic evaluations have been introduced for other sheep and 
goat breeds (Fuerst-Waltl and Fuerst, 2021; 2022). For the mountain sheep breeds, 
genetic evaluation currently includes the traits age at first lambing, lambing interval, 
lambs born and lambs born alive (both maternal and paternal) and the fitness index 
based on these traits. Breeding values are calculated on two main dates, the beginning 
of January and the end of June. In addition, breeding values and reliabilities are 
calculated on a weekly basis, but are only uploaded if the change in reliability exceeds 
5% points or if a new result is available from individual performance recording (e.g. 
lambing). All estimated breeding values (EBV) are standardised to relative breeding 
values with a mean of 100 (rolling base, rams aged 5-15 years) and a genetic standard 
deviation of 12 points, with higher values being desirable. Longevity, one of the most 
important functional traits, is however missing from the current breeding objective. 
While survival analysis has long been the “state of the art”, especially in dairy breeding, 
for several reasons many newly established routine genetic evaluations are based on 
linear models and survival yes/no in certain periods (e.g. van Pelt et al., 2017; Heise 
and Simianer, 2019, Zuchtwert AUSTRIA, 2023). In livestock without dairy focus, such 
as beef or sheep with focus on lamb production, the number of births in a certain period 
may be of higher interest. Venot et al. (2013) proposed the number of calvings at a 
target age, called “productive efficiency”, as a suitable trait for beef cattle. Following 
the latter concept, a genetic evaluation based on linear models was developed for 
Tyrol Mountain.

Five cumulative periods were defined from the first lambing onwards, i.e. 1, 2, 3, 5 and 
8 years. The longevity related trait was defined as the number of lambings within each 
period. Following the concept of Brotherstone et al. (1997), the last uncompleted period 
of animals that are alive is considered by extrapolating their expected performance. All 
other periods are subsequently set to missing for these animals. Genetic parameters 
were calculated using the VCE6 software package (Groeneveld et al., 2008) and 
bivariate linear animal models. In addition to the random animal genetic effect, the 
model included the fixed effects of age at first lambing, year-month and herd, and the 
random effect of herd-year. Depending on the period, between 12,935 and 22,383 
ewes were considered (Table 1); the pedigree data set comprised 41,135 animals. 
Following intensive discussion with the breeding associations and contrary to dairy 
breeds, no correction for voluntary culling was made. 

Table 1 shows the number of animals, as well as the mean, standard deviation, 
minimum and maximum of the defined trait in each period. For period 1, the mean 
number of lambings is 1.75 ± 0.46, for period 8 it is 4.48 ± 2.90. In the higher periods, 
the number of lambings is somewhat lower than in other non-seasonal sheep breeds 
(data not shown). However, this may also be due to conscious management decisions 
by farmers, as seasonal lambing is potentially advantageous in the case of alpine 
grazing, which is particularly common in the federal province of Tyrol. 
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Table 2 shows the heritabilities and genetic correlations as well as their standard errors 
for the five traits, number of lambings in a defined period. All bivariate runs finished with 
optimal status. Both the heritabilities (h2 = 0.034 to 0.14) and the genetic correlations (ra 
= 0.81 to 0.99) lie within a reasonable range and are consistent. Heritabilities increase 
markedly with increasing period. Results for other mountain sheep breeds such as 
Jura or Brown Mountain are however very similar (h2 = 0.10 and 0.13 in period 8, 
respectively; data not shown). For the land sheep breed Merinoland, also being non-
seasonal, but bred with a focus on meat production (Fuerst-Waltl and Fuerst, 2021) 

 
Table 1. Number of animals and mean, standard deviation, minimum and maximum for the number of 
lambings in the defined periods (1, 2, 3, 5 and 8 years). 
 

Period (yrs) N 
Average number  

of lambings 
Standard  
deviation 

Minimum Maximum 

1 22,383 1.75 0.46 1 3 
2 21,332 2.67 1.01 1 5 
3 19,890 3.36 1.53 1 7 
5 17,454 4.20 2.38 1 10 
8 12,935 4.48 2.90 1 15 

 
  

Table 1. Number of animals and mean, standard deviation, minimum and maximum 
for the number of lambings in the defined periods (1, 2, 3, 5 and 8 years).

 
Table 2. Heritabilities (on diagonal) and genetic correlations (above diagonal) and their standard errors in 
parenthesis for the number of lambings in the defined periods (1, 2, 3, 5 and 8 years). 
 

Period 1 2 3 5 8 
1 0.034 (0.01) 0.97 (0.04) 0.92 (0.06) 0.86 (0.06) 0.81 (0.02) 
2  0.063 (0.01) 0.99 (0.01) 0.97 (0.02) 0.96 (0.03) 
3   0.089 (0.01) 0.99 (0.01) 0.99 (0.01) 
5    0.128 (0.01) 0.99 (0.01) 
8     0.140 (0.01) 

 
 
 
  

Table 2. Heritabilities (on diagonal) and genetic correlations (above diagonal) and their 
standard errors in parenthesis for the number of lambings in the defined periods (1, 
2, 3, 5 and 8 years).

 

 
 
Figure 1. Mean number of lambings of daughters of rams with period 3 breeding values 
(EBV) of <= 88 and >=112. 
 

Figure 1. Mean number of lambings of daughters of rams with period 3 breeding 
values (EBV) of <= 88 and >=112.
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lower heritabilities were observed in all periods (e.g. h2 = 0.06 in period 8), though. 
The genetic correlations range from 0.81 between period 1 and 5 and 0.99 between 
e.g. period 4 and 5. The periods at younger ages will thus provide suitable predictors 
for the number of lambings later in life.  

Based on the genetic parameters, genetic evaluation test runs were performed by MiX99 
(MiX99 Development Team, 2022), which is also used in the routine. In accordance to 
other traits, natural EBV were standardised to a mean of 100 and 12 points per genetic 
standard deviation. Figure 1 illustrates the mean number of lambings for daughters of 
rams with EBV for period 3 <=88 and >=112. The difference between these two ewe 
groups is 0.2 lambings in period 1, in period 8 it is as high as 5.2 lambings.

The first official EBV will be published in June 2024. Breeding values for all periods 
are estimated multivariately, but only those for period 3 are published for animals with 
a minimum reliability of r2 = 0.20.

The introduction of the new EBV for longevity will be accompanied by the introduction 
of a genetic evaluation for conformation traits based on linear scoring and a total merit 
index (TMI). Within the TMI, longevity will have a relative weight of 30%, which is 
half the weight of all functional traits. The inclusion of conformation traits as auxiliary 
traits for longevity is not yet feasible as the estimated genetic correlations still have 
too high standard errors and are therefore unreliable. Linear scoring has only recently 
been introduced, so ewes with phenotypes for conformation have not had the chance 
to survive higher periods. Therefore, genetic correlations between conformation and 
longevity will be re-estimated over the next few years and appropriate traits will be 
selected based on the results.
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The proportion of organic farms in dairy goat farming in Bavaria and Baden-Württemberg 
is over 80%. As part of the GoOrganic project (2016-2022), the development of a 
breeding value estimation for lifetime performance as well as the establishment of 
targeted mating taking into account the natural mating as well as the establishment of 
a network of those involved in goat breeding, including advisory and further training 
structures, were addressed. Possibilities of breeding for health and robustness are 
being pursued in the current HealthyGoats project (2021-2024).
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In Bavaria and Baden-Württemberg, over 80% of professional dairy goat farming 
takes place on organic farms (Manek et al., 2017). Professional dairy goat farming 
with populations of over 80 to 500 milked goats has increased significantly in recent 
years. Still, dairy goat farming is a small niche within agricultural production in Germany. 
Unfortunately, there are no exact figures available, only estimates but for example, 
there are approximately 50 farms with around 5.000 dairy goats in Baden-Württemberg 
(Kern, 2019). Goat breeding structures in Germany are significantly less developed 
than in other livestock species. Artificial insemination of goats plays a minor role here; 
there is only one EU-approved insemination station for small ruminants in Germany. 
Reproduction usually takes place seasonally and through natural mating. A few goat 
breeders import goat semen or live goat bucks from France or the Netherlands. The 
economic viability of dairy goat farms is primarily determined by milk production and, 
in particular, the milk ingredients. An increase in milk yield on organic farms is linked 
to good forage utilization, especially pasture or green fodder, as well as tolerance or 
resistance to parasites. This places new demands on the breeding goals of dairy goat 
breeding and corresponds to a high degree with the conceptual breeding goals of 
an organic breeding program. This was the initial situation for the GoOrganic project 
- development of a sustainable breeding program “Goats for organic farming”. The 
project was carried out from 2016 to 2022 by the University of Hohenheim together 
with various actors from science and practice in Bavaria, Baden-Württemberg and 
Thuringia. The goals of GoOrganic were to develop a breeding value estimation for 
lifetime performance as well as to establish targeted mating taking into account the 
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(prevailing) natural mating as well as to build a network of those involved in goat 
breeding, including advisory and further training structures.

GoOrganic was able to build on the breeding value estimation for milk production 
(Herold et al., 2018) and conformation traits (Lange et al., 2018) of the State Office 
for Geoinformation and Rural Development (Landesamt für Geoinformation und 
Landentwicklung Baden-Württemberg, LGL) for the two domestic breeds German Fawn 
and German White in Bavaria and Baden-Württemberg. Before the new breeding value 
could be developed, the influence of continuous milking on the lifetime performance of 
the goats had to be examined. Continuous milking is increasingly being practiced on 
agricultural dairy goat farms meaning that they have been milking part of their herd over 
several years, without any lambing in between. There are mainly three reasons for this: 

1.	 The high workload during seasonal lambing;

2.	 The aim of producing milk all year round if possible; 

3.	 The poor sales opportunities for goat kids that are not needed for breeding. 

Wolber et al. (2018) and Wolber et al. (2019) proofed an influence of continuous 
milking on lifetime performance. Based on this, Wolber et al. (2021) estimated genetic 
parameters for various traits that describe an animal’s lifetime performance. These are 
length of productive life (LPL), lifetime efficiency (LEF) and milk yield efficiency (EDM). 
From these traits, LEF as lifetime milk production (kg) per days of life appears to be 
particularly suitable for depicting an animal’s lifetime performance. This means LEF 
combines the ability to achieve high levels of performance with the ability of a long 
and healthy life. According to Wolber et al. (2021) the heritability of LEF is 0.29 ± 0.03 
and it is highly correlated with LPL (rG = 0.65 ± 0.06). Additionally, a system for linear 
description of dairy goats was developed in 2013 and since 2018, breeding values for 
conformation traits are estimated (Lange et al., 2018). The information on conformation 
traits could also be included in a breeding value estimation for lifetime performance. 
A breeding value estimation for LPL based on a section model is currently being 
developed (Herold and Chagunda, 2023). The next step is to develop a breeding value 
estimation for LEF.

As a performance test for health traits, a monitoring system for goats (GMON goat) was 
established in the goat herd manager (ZDV) of the performance testing organisations 
(LKV) in Bavaria and Baden-Württemberg. It is based on a central health key for dairy 
goats. The GMON goat is based solely on the observations of goat farmers and not on 
diagnoses by veterinarians. This is because there are only a few goat farms and the 
veterinarians usually only look after one or very few goat farms and therefore would 
not come up with the required number of diagnoses for data validation. Besides health 
data the farmers can also monitor measures such as vaccinations, deworming or hoof 
trimming. Even if the GMON goat is now well accepted, it must be taken into account 
that the number of farms that use ZDV is small. By the end of 2023, 716 observations 
from 11 farms had been entered in Baden-Württemberg and 6,471 observations from 
49 farms in Bavaria. The GMON goat is important information for farmers when it 
comes to herd management or individual animal selection. The database is currently 
not sufficient to estimate breeding values. Additionally, Wolber et al. (2021) estimated 
genetic parameters for the indirect health traits fat:protein ratio (FPR) and urea content 
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(UC) which are recorded during the milk performance test. Heritabilities were 
0.32 ± 0.03 and 0.47 ± 0.04. 

In order to further advance breeding for health and robustness in goats, the 
HealthyGoats project started in 2021 - expanding breeding for health and robustness 
in dairy goats (www.gesundeziegen.de; Bernau et al., 2023). The HealthyGoats project 
deals with new health and robustness traits in dairy goats as well as advice on animal 
health and breeding. The detailed recording of possible new traits is carried out on 
ten farms. In addition, the GMON goat was expanded to another database, serv.it 
OVICAP, in order to expand data collection to other goat breeders and to carry out 
health trait monitoring throughout Germany. One project goal is to recommend new 
traits for breeding for health in goats and thus for performance testing. 

In addition to the development and establishment of new traits as well as the new 
performance testing systems, goat breeders and goat keepers should be actively 
involved in breeding. The method Stable School appears to be particularly suitable here. 
The project team of GoOrganic implemented the Stable School method as a breeding 
working group concept: A steady group of goat farmers meets regularly, moderated 
by a representative of the breeding association. A farm from the group is the host and 
determines the topic (an important / current challenge on the farm). The meetings 
always follow a strict schedule; at the end of the meeting, the farm has a portfolio of 
recommendations from the participants on how to overcome the operational challenge. 
The method was transferred to the HealthyGoats project, where the methodology was 
further developed in order to be able to offer online working groups. In the HealthyGoats 
project, the goat breeding associations of Bavaria, Baden-Württemberg and Thuringia 
also want to address the continuation of the method. In addition, the HealthyGoats 
project is working to establish the method of breeding location decision developed 
within the framework of GoOrganic in breeding advice and to train and coach interested 
consultants (Wolber et al., 2023).

Dairy goat farming in Bavaria and Baden-Württemberg is a small but growing niche. 
Predominantly organic goat farming is perceived positively by consumers. The work 
of the breeding value estimation team and the various goat breeding projects support 
goat farmers in Bavaria as well as in Baden-Württemberg and Thuringia. In Bavaria and 
Baden-Württemberg, goat farmers also benefit from performance testing organizations 
services in the areas of milk performance testing and LKV goat herd manager. This 
ensures that the goat farmers are well positioned for the future in the area of breeding 
and that progress in breeding in the sense of sustainable and animal-friendly breeding 
is possible.
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Success in dairy sheep and goat farming depends largely on efficient management 
of available resources and expertise of farmers. Both, combined with the low level of 
implementing innovation at farm level dictate animal productivity and farm profitability. 
The objective was to develop farmer-friendly standard operating procedures (SOPs) 
for training employees as well as recording protocols to cater the needs of efficient 
farm management. Initially, a comprehensive review of existing guidelines and 
relative research studies regarding farm management practices was performed. In 
particular, milk production recording and udder morphology assessment guidelines 
of the International Committee of Animal Recording (ICAR) and protocols for Animal 
Welfare Indicators (AWIN) were examined. 

Refereed publications about reproduction technologies, newborn management, 
nutritional management, milking procedures, milking parlor critical points, and 
biosecurity measures were studied. Decision support tools for farm management and 
economic performance assessment were also explored. Based on the above, detailed 
SOPs, tailored for dairy farms, were developed. Each SOP was divided in subsections 
detailing objectives, step-by-step procedures, and required equipment/technologies. 
Specifically, SOPS for reproduction management focused on artificial insemination and 
natural mating, pregnancy diagnosis, and lambing/kidding management. 

SOPs for newborn lambs/kids focused on colostrum quality and storage, artificial 
rearing, and prevention of diarrhea incidents. SOPs for nutritional management included 
guidelines for meeting energy and protein requirements of each animal category 
according to their physiological and production stage, and sample collection of feeds 
for chemical analysis. Milking parlor and milking procedure guidelines focused on 
maintenance, cleaning, and education of milkers on milking practices. SOPs for animal 
health and welfare included vaccination protocols, and practical welfare indicators (body 
condition score, water availability, fleece cleanliness panting, stocking density, hoof 
overgrowth, body and skin lesions, lameness, fecal soiling, ocular discharge, mastitis). 

SOPs for milk production and udder health detailed procedures for milk yield recording 
with volumetric milk meters, milk sample collection for chemical analysis as well as 
udder morphometric measurements. Biosecurity SOPs, focused on internal and 
external measures for disease prevention and control. Lastly, the applicability and 
usefulness of existing decision support tools for efficient farm management and 
economic performance of small ruminant farms was assessed. Next steps include the 
integration of these protocols in an online interactive platform. The notion is that those 
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customized SOPs will help farmers become more efficient in managing dairy sheep 
and goat farms while ensuring animal health and welfare.

Keywords: small ruminants, training, standard operating procedures, recording 
protocols, production, profitability. 
Presented at: ICAR Session 7: “Breeding for agro-ecological transition in sheep and 
goats”

Dairy sheep and goats are primarily reared in Mediterranean countries, having a 
substantial socio-economic impact. Their milk is mainly processed into cheese products, 
many of which are Protected Designation of Origin. Moreover, they provide ecosystem 
services and employment opportunities, especially in mountainous and less-favored 
areas (Arsenos et al., 2021).

However, many sheep and goat farmers do not follow established guidelines and 
management protocols. Moreover, they have not adopted new technologies, and 
innovations that could help modernize farm practices (Paraskevopoulou et al., 2020). 
All the above result in low levels of animal productivity, poor animal health and welfare, 
high production costs, and low farm income. To overcome these challenges education 
on farm management practices detailing step-by-step procedures is imperative. 

The objective here was to develop farmer-friendly standard operating procedures 
(SOPs) for training employees and recording protocols to cater the needs of efficient 
farm management. 

Ten weeks prior to the mating period, males should be assessed to detect issues that 
could adversely affect reproductive ability. Evaluation includes assessment of body 
condition score (BCS; 3-4), testicular size (>30 cm and >25 cm in rams and bucks, 
respectively), genitalia, jaw, teeth, and limbs. Females should be also assessed based 
on age (first mating at 7-8 months), BCS (2.5-3.5), health, and genetic improvement 
criteria.

Ideally, artificial insemination (AI) should be performed. AI enhances genetic 
improvement by increasing selection intensity and genetic evaluation precision. To 
increase cervical AI success rates the following guidelines (Priskas et al., 2022) are 
suggested: 

1.	 Selection of the best females based on age (first to third lactation period), BCS 
(2.5-3.5), health, productivity (milk yield and quality), udder morphology, and 
somatic cell count.

2.	 Estrus synchronization using intravaginal fluogestone acetate sponges, or CIDR 
devices and insemination 50-55 hours following their removal. 

3.	 Proper animal handling after AI. 

Any animals not artificially inseminated are naturally mated. Hormonal interventions are 
suggested to increase reproduction and management efficiency. These include estrus 
synchronization or melatonin implants to accelerate the onset of reproductive activity 
(1 to 10 and 1 to 25 male to female ratio, respectively). Random mating practices should 
be avoided, and pedigree records should be kept for purposes of genetic improvement. 
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Colostrum is imperative for newborn survival. To guarantee an efficient amount of 
high-quality colostrum for lambs/kids the following are suggested: 

1.	 Individual housing of ewes/goats with their newborns for 2-4 days following 
parturition, 

2.	 Assessment of colostrum quality using a digital Brix refractometer, 

3.	 Pasteurization to reduce microbial load, 

4.	 Storage (refrigerator or freezer) to accommodate any future needs, 

5.	 Thawing and warming prior to administration.

Artificial rearing is an important management practice to increase farm profitability. 
The following guidelines are suggested for efficient implementation: 

1.	 Smooth transition, observation, and assistance of lambs/kids, 

2.	 Use of high-quality milk replacer that should be prepared and administered 
according to manufacturer’s instructions, 

3.	 Provision of a warm and dry environment to avoid hypothermia, 

4.	 Provision of feedstuffs at the age of one week, 

5.	 Weaning at the age of 35-40 days and at a body weight of 15 kg.

During the mating period and first month of gestation the nutritional management of the 
respective lactation stage is followed; flushing is advised to achieve a BCS of 2.5-3.5. 
During the last month of gestation energy and protein demands increase substantially 
but feed intake decreases. Therefore, it is suggested to gradually decrease forages and 
increase concentrates; BCS at this stage should be 3-3.5. During the early stages of 
lactation, animals are typically fed with 1.5-2 kg of lucerne hay and/or silage, 0.15‑0.2 kg 
of straw and 1-1.5 kg of concentrates offered at least twice daily to avoid ruminal 
acidosis. In general, feeding of males is designated to cover mainly maintenance 
requirements. Two months prior to mating period the amount of concentrate should 
be increased to 1 kg/animal/day to meet energy demands and improve semen quality. 
Finally, from weaning to five months old, lambs/kids are fed with concentrates and 
straw ad libitum and 500-600 g of lucerne hay. From the age of five months and until 
the first mating period, 500-700 g of concentrate feed, 500-600 g of lucerne hay, and 
straw ad libitum are suggested. 

Milking procedure includes the following steps: 

1.	 Use of gloves by milkers and frequent disinfection or replacement.

2.	 Use of discrete measures to indicate animals with mastitis that should be milked 
separately.

3.	 Pre-stripping and observation of milk for any signs of mastitis.

4.	 Attachment of milking units.
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5.	 Cluster removal after vacuum cessation to prevent teat injuries.

6.	 Post-milking disinfection (post-dipping).

Milking parlor should be cleaned both externally and internally after every milking. 
External cleaning is performed using high-pressure water. Critical points for efficient 
internal cleaning include: 

1.	 Water temperature at 70-80o C.

2.	 Use of alkaline detergents every time.

3.	 Use of acid detergents once per week if the water is not hard, otherwise 2-3 times 
per week. 

4.	 Cleaning duration for at least 30 min and 90 min when using only alkaline or both 
alkaline and acid detergents, respectively. 

Vacuum level in the manometer should be checked daily. Moreover, vacuum level, 
pulsation rate and pulsation ratio in the milking units should be monitored twice per 
year by authorized technicians using designated equipment. Vacuum level differences 
between clusters and the vacuum pump should not exceed 2 kPa; such differences have 
been associated with increased risk for subclinical mastitis and teat-end hyperkeratosis 
(Vouraki et al., 2018). Finally, clusters should be replaced at 2,500-5,000 milkings per 
milking unit.

External biosecurity aims at reducing the risk of disease introduction to a farm. External 
biosecurity measures include: 

1.	 Disinfection of vehicles’ wheels when entering farm premises.

2.	 Use of gloves, clean clothing and footwear by all visitors and employees.

3.	 Low animal purchasing frequency and quarantine for at least three weeks.

4.	 Handling of dead animals with gloves, and storage in a freezer until disposal, and 

5.	 Vermin control. 

Internal biosecurity aims at reducing the spread of a disease within a farm. It is suggested 
that animals of different age groups are housed separately; younger animals should 
be visited first since they are more susceptible to infections. Sick animals should be 
separated from the healthy ones and remain in a hospital pen. Diagnoses, treatments, 
and deaths should be recorded. Moreover, for efficient cleaning and disinfection the 
following steps should be followed: 

1.	 Dry cleaning and removal of organic material.

2.	 Soaking of surfaces with detergents to loosen all remaining organic material.

3.	 High pressure cleaning with water.

4.	 Drying to avoid disinfectant dilution.

5.	 Disinfection and drying.

Vaccinations are suggested for enterotoxemia (ewes/does one month prior to parturition 
and lambs/kids at the age of three weeks), contagious agalactia (ewes/does two 
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months prior to parturition and lambs/kids at the age of two months), enzootic abortion 
(one month prior to first mating) and paratuberculosis (in goat farms where animals 
have been diagnosed with the disease and at the age of 2-3 weeks to 6 months). 
Finally, welfare indicators to be routinely assessed include BCS, water availability, 
fleece cleanliness, panting, stocking density, hoof overgrowth, body and skin lesions, 
lameness, fecal soiling, ocular discharge, and mastitis. Scoring is performed according 
to AWIN guidelines (Dwyer et al., 2015). 

Milk yield recording is performed using volumetric milk meters. Recording starts 
after weaning and is performed monthly (five monthly records per milking period are 
suggested) following the guidelines of International Committee of Animal Recording 
(ICAR, 2018). Inddividual milk samples should be collected from the milk meters 
monthly (at least for three months in early lactation) to assess milk quality (fat, protein, 
lactose, solids-non-fat content). Udder morphology assessment includes morphometric 
measurements of udder depth, udder attachment, degree of separation of udder halves, 
and teat placement. Scoring is performed using the nine-point linear scale proposed 
by Casu et al. (2006) and ICAR (2018).

Decision support tools can be used to record and evaluate farm economic performance. 
Specifically, a web-based application has been developed within the ProudFarm 
project to familiarize farmers with financial management of small ruminant farms and 
help towards decision making. This app illustrates the expected daily net income 
against feeding costs. Input data include daily milk production and animal feed intake. 
Moreover, web applications, such as Happy Goats (https://happygoats.eu/), are 
available to assess annual farm economic performance in relation to farm management 
practices. Towards this end, records should be kept and used as input parameters for 
the following categories: 

1.	 Flock size.

2.	 Production (milk and meat), 

3.	 Nutritional management and grazing.

4.	 Income, farm prices, and costs.

This work is funded by “Measure 16  ‘Cooperation” in the framework of National 
Rural Development Programme, and it is co-financed by the European fund for 
rural development (EAFRD) and national budgets (ProudFarm; Project code 
M16SYN2-00016).
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In 2016, the International Committee for Animal Recording (ICAR) published the first 
international guidelines for the linear scoring of dairy goats. A working group with the 
goal to review and revise these guidelines was established in 2022. First, a literature 
and internet search were carried out on conformation recording systems for dairy 
goats that existed worldwide. Ten organizations were identified that carried out a linear 
scoring of dairy goats (Austria, Canada, France, Germany, Mexico, Norway, Slovenia, 
Spain, United Kingdom and USA). All organizations were contacted and asked whether 
they would like to participate in a working group to revise the ICAR guidelines. Eight 
of them take part in the working group. The working group’s proposed changes are 
to be implemented in 2024.

The ICAR guidelines include 21 traits in three categories as follows: udder (9), legs 
(5) and body frame (7). The focus of all eight participating organizations was on udder 
traits. Leg traits are recorded in four countries according to the ICAR guidelines. The 
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ICAR body frame traits are recorded by four countries; they are often measured and 
not described linearly. 

A breeding value estimation for conformation traits was developed in five of the eight 
participating countries. In addition, relationships with other traits, in particular length of 
productive life (LPL), were examined. The traits recommended by ICAR will therefore 
provide even better information in the future as auxiliary traits for breeding healthy and 
long-living dairy goats.

Keywords: dairy goats; conformation; linear type traits  
Presented at: Session 7, Breeding for agroecological transition in sheep and goats 

One goal in dairy goat breeding is to breed healthy and long-living animals to achieve 
the desired performance. Conformation traits play a major role for production, longevity 
and profitability (Massender et al., 2022; Castañeda-Bustos et al., 2017; McLaren et 
al., 2016). While much farm animal’s performance can be measured objectively, such 
as milk production and daily gain, conducting an objective conformation assessment is 
more complex. ICAR published international guidelines for conformation recording in 
dairy goats in 2016 to help to ensure the equivalence of conformation recording collected 
worldwide and to provide practitioners with description procedures that are backed up 
by scientific knowledge. At that time, four countries were involved in developing the 
guidelines. Since then, conformation recording has been introduced in several other 
countries. Practical experience in carrying out the performance test according to the 
published guidelines as well as scientific studies on the genetic basis of the traits made 
it necessary to revise the guidelines. Therefore, a working group of experts to review 
and revise the ICAR guidelines was established in 2022. The working group’s proposed 
changes are to be implemented in 2024. The following describes the distribution of the 
conformation recording in dairy goats worldwide as well as experience with using the 
traits from the ICAR guidelines from 2016.

A literature and internet search were carried out in 2022 on conformation recording 
systems for dairy goats that existed worldwide. All identified organizations were 
contacted and asked whether they would like to participate in a working group to 
revise the ICAR guidelines. In a series of online meetings, participants presented and 
discussed the conformation recording system in their countries. All the information 
collected was supplemented with references from the literature and shared among the 
participants. The results of the working group were agreed with the ICAR conformation 
working group at the ICAR meeting in Bled in May 2024 and are to be incorporated 
into the guidelines.

Ten organizations were identified that carried out a linear description of dairy goats 
(Austria, Canada, France, Germany, Mexico, Norway, Slovenia, Spain, United Kingdom 
and USA). All organizations were contacted and asked whether they would like to 
participate in a working group to revise the ICAR guidelines. Eight of them responded 
positively. The stakeholders are representatives of state institutions, universities 
and breeding organizations. In two countries, only male animals are reported, in two 
countries both males and females are included and in all other countries female animals 
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only are reported, providing the information relevant to the sires of those female 
progeny. Describing the goats includes the responsibility of goat breeders, employees 
of the breeding associations and state employees.

The ICAR guidelines currently include 21 traits in three categories of udder (9), legs (5) 
and body frame (7). The focus of the majority of participating organizations is on udder 
traits. Eight of the ICAR traits are recorded in four countries, seven in two countries 
and two countries record only two of the ICAR udder traits. Some countries record 
additional traits such as udder profile/form, rear udder side view or deficiencies like teat 
thickness or supernumerary teats. Leg traits are recorded in four countries according to 
the ICAR guidelines. Further traits are front legs set front view, front legs set side view 
and feet angle opening. Splayed toes are recorded as a deficiency in one country. The 
ICAR body frame traits are recorded by four countries; they are often measured and not 
described linearly. Additionally, body length and chest circumference are measured in 
two countries, other traits are chest depth, width of pelvis, withers height and sacrum 
height (all measured). Two countries describe dairyness, which considers assessments 
of for example length, cleanness and flatness of bone, length and leanness of neck, 
definition and sharpness of withers, ribs angularity, degree of fleshing, femininity and 

Table 1. Heritabilities (± SE, if available) of exemplary ICAR goat conformation 
traits.Table 1. Heritabilities (± SE, if available) of exemplary ICAR goat conformation traits. 
 

Trait Heritability Study 
Stature 0.20 ± 0.02 Castañeda-Bustos et al., 2017 
 0.76 ± 0.18 Lange et al., 2018 
 0.52 Luo et al., 1997 
 0.18 Muñoz-Mejías et al., 2023 
 0.72 ± 0.07 Valencia-Posadas et al., 2022 
 0.52 Wiggans and Hubbard, 2001 
Loin strength 0.09-0.12 Fuerst-Waltl and Fuerst, 2022 
 0.0 ± 0.02 Lange et al., 2018 
Rear legs set side view 0.20 ± 0.02 Castañeda-Bustos et al., 2017 
 0.04-0.09 Fuerst-Waltl and Fuerst, 2022 
 0.15 ± 0.10 Lange et al., 2018 
 0.21 Luo et al., 1997 
 0.03 Muñoz-Mejías et al., 2023 
 0.19 ± 0.09 Valencia-Posadas et al., 2022 
 0.21 Wiggans and Hubbard, 2001 
Rear legs set rear view 0.0-0.08 Fuerst-Waltl and Fuerst, 2022 
 0.0 ± 0.10 Lange et al., 2018 
 0.25 ± 0.05  McLaren et al., 2016 
 0.23 Muñoz-Mejías et al., 2023 
Fore udder attachment 0.13-0.29 Biffani et al., 2020  
 0.25 ± 0.02 Castañeda-Bustos et al., 2017 
 0.30 Clément et al., 2002 
 0.09-0.26 Fuerst-Waltl and Fuerst, 2022 
 0.11 ± 0.10 Lange et al., 2018 
 0.25 Luo et al., 1997 
 0.26-0.33 Manfredi et al., 2001  
 0.26 ± 0.02 Massender et al., 2022 
 0.15 ± 0.04 McLaren et al., 2016 
 0.23 Muñoz-Mejías et al., 2023 
 0.30 ± 0.01 Rupp et al., 2011 (Alpine) 
 0.25 ± 0.02 Rupp et al., 2011 (Saanen) 
 0.13 ± 0.08 Valencia-Posadas et al., 2022 
 0.25 Wiggans and Hubbard, 2001 
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refinement, and fineness and texture of skin (extremes are coarseness and sharpness). 
A loose shoulder is recorded as a defect in two countries, describing the lateral deviation 
of the shoulder joint due to relaxation of the muscles between the chest and front legs. 
A breeding value estimation for conformation traits was developed in five of the eight 
participating countries. Table 1 shows example genetic parameters for a few selected 
ICAR traits. The genetic and phenotypic relationships amongst conformation traits and 
milk yield in mixed breed UK dairy goats scored during their first lactation in the UK 
were reported by McLaren et al. (2016). The genetic correlations estimated between the 
conformation traits and milk yield, across the first lactation, demonstrate the changes 
that occur during this time period. The majority of the correlations estimated between 
milk yield and both the udder and teat traits were negative and antagonistic. These 
results are consistent with those of Clément et al. (2002), who found null or negative 
correlations in French goat breeds. 

In addition, relationships with other traits, in particular length of productive life (LPL), were 
examined. Genetic correlations were estimated between the final score and functional 
productive life at 72 months of age (FPL72) (0.52 ± 0.11), fore udder attachment and 
FPL72 (0.37 ± 0.09) and udder depth with FPL72 (0.36 ± 0.10). This suggests that 
selection for these type traits can improve FPL72 in dairy goats (Castañeda-Bustos 
et al., 2017). Findings from these genetic analyses were incorporated into the revision 
of the ICAR traits.

Finally, the working group agreed to skip the traits rear udder height, locomotion, chest 
and rump width. The following traits are to be included: teat orientation rear and side 
view, feet angle opening and chest circumference. Teat orientation is the direction 
of the teats in relation to the udder viewed from rear/side. Feet angle opening is the 
angle between the hind legs, when the goat is walking, and chest circumference is the 
circumference measured behind the shoulder blades. The angularity trait is renamed 
rib structure. Chest circumference replaces chest width. At rear udder height and rump 
width, the general opinion was that these traits are not relevant for the majority of the 
population. For locomotion, all group members agreed that recording the trait was not 

Table 2. Summary of the working group's resolutions 
 

Trait group Keep Skip New 

Udder traits Fore udder attachment 
Central ligament 
Rear udder width 
Udder depth 
Teat placement rear view 
Teat length 
Teat form 

Rear udder height Teat orientation rear view 
Teat orientation side view 

Leg traits Rear legs set rear view 
Rear legs set side view 
Front pasterns side view 
Hind pasterns side view 

Locomotion Feet angle opening 

Body frame traits Stature 
Body depth 
Rump angle 
Loin strength 
Rib structure (before: 
Angularity) 

Chest width 
Rump width 

Chest circumference 

 
 

Table 2. Summary of the working group’s resolutions.
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practical. Table 2 provides an overview of the existing, new and deleted traits for the 
guidelines for linear scoring in goats

A list of defects has also been drawn up to supplement the guidelines. Table 3 shows 
the defects and their definition.

Milk produced from dairy goats is an important source of nutrition for many populations 
worldwide, and is considered to be a niche market for others. As the formalisation of 
breeding programs to enhance productivity has become more accessible world-wide, 
it is important to consider functional fitness traits as being integral to these breeding 
programmes. From four countries in 2016, there are now (in 2024) ten countries, which 
have introduced linear scoring in dairy goat breeding. The importance of the ICAR 
guidelines increases with the extension of linear scoring in different countries. It is 
therefore necessary to regularly adapt the guidelines to new developments, which has 
now been done by the sub-working group. At the same time, dissemination to all relevant 
organizations and harmonization among describers within and across populations will 
be essential to ensure adequate data quality and comparability. Studies of the genetic 
basis show that all of the traits proposed by ICAR are heritable, mostly in the low to 
moderate range, depending on the populations studied. Therefore, the traits can be 
improved by selection. Findings of McLaren et al. (2016) and Clément et al. (2002) 
on negative or null correlations between conformation traits and milk yield show the 
importance of scoring conformation scores in dairy goats as breeding programmes 
would benefit from including these traits in order to ensure that selection for increased 
productivity is not accompanied by the deterioration of functional fitness. In addition, 
morphological traits are genetically favourably correlated with somatic cell count (Rupp 
et al., 2011). Thus, taking morphology into account in the selection objective is also a 
way of acting on udder health. Through the improvement of conformation traits based 
on the ICAR guidelines, the productive life of goats can be extended, the economic 
value of the animals can be improved and the income of breeders can be increased. 
To ensure this, further efforts should be made to investigate genetic relationships with 
LPL and other health-related traits in the target populations..

Discussion

Table 3. Examples of defects in dairy goats 
 
Defect Definition 
Loose shoulder Weakening of the muscles between the chest and 

the front limbs, which can cause problems when 
standing up 

Jaw: undershot and overshot 
 

Underdevelopment of the lower or upper jaw 

Supernumerary teats 
 

More than two teats (which sometimes produce 
milk) 

Double teats  Teat splits in two teats 
Unbalanced udder Udder halves are expressed to varying degrees 
Udder warts Non-milk-producing protrusions on the udder 
Weeping teats/udder Milk can filter through pores in the skin to the udder 

surface 
Splayed claws Enlarged gap between the claws 

 

Table 3. Examples of defects in dairy goats
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In Italy, the number of buffalo has increased by the 173% from 1996 until now 
with a total of around 425000 buffaloes. In contrast to dairy cows, adoption of new 
technologies such as automatic systems is limited in buffalo. Milk yields are recorded 
by hand, making it time-consuming and error prone. As a result, few data are available 
in buffalo lactations. The analysis of lactation curve shape has been shown to be 
useful for technicians and farmers to understand the evolution of milk yields and 
support management decisions. Lactation curve models have not yet been explored 
in buffaloes opposed to dairy cows where lactation curve model have been adopted 
by the entire industry (e.g. Wood, Wilkmink or Milkbot). The aim of our work was to 
explore lactation curve models applied to Mediterranean Italian buffaloes by performing 
a comparative assessment of Wood and Milkbot equations. The analysis was performed 
on a large dataset containing the milk yield, calving date, lactation number and days 
in milk from 333 376 animals on 295 herds over a 4-year period from 2013 until 2016. 
Performance of the final models was evaluated using the coefficient of determination 
(R2). Wood’s model performed slightly better than Milkbot model with R2 = 0.75 ± 0.24 
and 0.66 ± 0.23, respectively illustrating the ability of both models to fit buffalo daily 
milk production. These results encourage adopting a more analytical approaches to 
buffalo to obtain in-depth phenotypes on their milk productive capacity. Although, 
Milkbot performed slightly worse than Wood, it directly provides information on the 
loss of productivity capacity which can be converted into a measure of persistency. In 
conclusion, the final aim was promoting the use of mathematical models in the buffalo.

Keywords: Buffalo, Lactation curves, Wood, Milkbot, Mozzarella cheese. 
Presented at the ICAR Anual Conference 2024 in Bled at the Session 7: Breeding 
for agroecological transition in sheep and goats.  

Holstein cows are generally recognised as the most important dairy species due to their 
high milk production. Even if dairy cattle represented the majority of the milk market, 
other species, such as sheep, goats or buffaloes, are still important producers of milk 
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and dairy products. In particular, the buffalo sector has been constantly growing in the 
last years, especially in the Mediterranean countries. In Asia and South America buffalo 
farming is considered an important sector from an economic and social point of view. 
The buffalo sector in Italy changed from an extensive to intensive livestock system 
where small herds with few animals were replaced by bigger herds with more than 
100 cows. Indeed, nowadays buffalo sector counted a total of around 425 000 buffaloes 
especially located in the South of Italy (BDN, Italy). The main output of buffalo farm 
is the “Mozzarella di bufala Campana PDO” and thanks to its organoleptic properties 
and taste, it is appreciated globally (Levante et al., 2023). To manage and cover the 
market request of buffalo milk a more data-driven approach to the industry is needed. 

Lactation models (LC) are one of the pivotal tools to understand and forecast milk 
production and helps breeder make better management decisions. Due the key role of 
this tool, different lactation curves model has been developed over the last 50 years. 

Since 1923, with the advent of the model theorized from Brody et al. (1923), various 
mathematical models have been introduced to characterize the shape of dairy lactation 
curves (LC) and provide insights into milk yield production. Among these models, the 
Wood equation stands out as one of the most utilized benchmarks for model evaluation 
(Radjabalizadeh et al., 2022). This equation, formulated by Wood in 1967, is based on 
an incomplete gamma function and comprises three key parameters: scale (a), ramp 
(b), and declining slope (c) (Wood, 1967).

A more recent addition to the repertoire of lactation curve models is the MilkBot model 
(Ehrlich, 2013). Like the Wood equation, the MilkBot model is an exponential equation, 
but it incorporates an additional parameter, enhancing its ability to capture the slope 
of lactation. Furthermore, this model introduced characteristics such as the time of 
maximal creation of productive capacity (offset, c) and the loss of productive capacity 
(decay, d). These parameters offered a more comprehensive understanding of the 
lactation process and can be easily translated into a measure of persistency.

All of those LC models have been poorly explored in buffaloes and only few papers 
were available in the literature (Khan et al., 2023; Metry et al., 1994; Şeahin et al., 
2015). The purpose of this work is providing evidence on how the Wood and Milkbot 
equations describe the buffalo LC, giving information to benchmark animal performance 
and ultimately improve milk production in buffalo.

The analysis was performed on a large dataset containing milk yield, calving date, 
lactation number and days in milk from 333376 animals on 295 buffalo herds from 
2013 until 2016 with lactation numbers ranging from 1 to 3. Animals with at least five 
observations per lactation were chosen to ensure a coherent fitting with at least the 
number of observations equal to the number of the regression parameters of the model. 
All data pre-processing was done through R software (version 4.3.2). 

The first mathematical model fitted to the data was the Wood equation (Wood, 1967) 
with the following formula:

Where Y is the milk production, t the days in milk, the magnitude a, b the time to peak 
and c is the decay.

Introduction

Material and 
methods

 
𝑌𝑌(𝑡𝑡) = 𝑎𝑎𝑎𝑎𝑏𝑏𝑒𝑒−𝑐𝑐𝑐𝑐 (1) 
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The second model employed was the MilkBot (Ehrlich, 2013). The full MilkBot equation 
is shown as:

Where Y is the milk production, t the days in milk, a the magnitude, b the time to peakc 
the offset and d the decay.

In this case, the fitting happened through the API version of the model (1.3), which was 
available online (Jim Ehrlich, API Milkbot). Wood and Milkbot equations required the 
employment of priors for the parameters a, b,c and d. Prior values were used as initial 
guesses to search the optimal solution. Initially, Wood and Milkbot models were fitted 
using priors based on a literature search (Khan et al., 2023; Şeahin et al., 2015). After 
the first fitting step, mean and standard deviation (sd) of regression parameters from 
the results were used to fit all lactations for a second time, At the end, the performance 
of the models was evaluated through the coefficient of determination (R2).

where SSres is the sum of the squared residuals and 𝑆𝑆tot is the total sum of squares. The curve_fit 
function from the scipy package was used to fit lactation data using Python v3.10.

The presented research provides a preliminary approach to a mathematical model 
of the buffalo LC shape. The results suggest an overall better performance of the 
Wood equation compared to Milkbot.The results of the fitting of the Wood and Milkbot 
equations are shown in detail and discussed in this section. Results are shown for 
lactation number 1, 2 and 3.

Table 1 reports the mean of parameters a,b,c ± s.d. and the R2 ± s.d.  

The mean values of a, b, c are coherent with Khan et al. (2023). We achieved high 
R2  values, especially for lactations 2 and 3. Our results suggest that the Wood model 
achieved a good approximation of real milk yield despite the low sampling rates of time 
series. On the other hand, the standard deviation for each parameter and R2 suggest 
that data are strongly variable about the mean, probably due to the variability in the 
number of milk points available for each lactation. 

This is one of the first analysis applying the Milkbot model to buffalo LC. No literature 
was available to compare the obtained results. However, results seem coherent based 

 

Y (𝑡𝑡) = 𝑎𝑎 (1 −  𝑒𝑒
𝑐𝑐−𝑡𝑡
𝑏𝑏  
2 ) 𝑒𝑒−𝑑𝑑𝑑𝑑 (2) 

 
Where Y is the milk production, t the days in milk, a the magnitude, b the time to peak 
  

 

𝑅𝑅2 = 𝑆𝑆𝑆𝑆𝑟𝑟𝑟𝑟𝑟𝑟
𝑆𝑆𝑆𝑆𝑡𝑡𝑡𝑡𝑡𝑡

 (3) 

 
  

Results and 
discussion

Wood analysis

 
Table 1. Fitting metrics of the Wood model. 
 

Parity 𝒂̅𝒂 ± 𝝈𝝈𝒂𝒂 𝒃̅𝒃 ± 𝝈𝝈𝒃𝒃 𝒄̅𝒄 ± 𝝈𝝈𝒄𝒄 𝑹𝑹𝟐𝟐 ̅̅ ̅̅ ± 𝝈𝝈𝑹𝑹𝟐𝟐 
1 6.1±4.2 0.30±0.30 0.005±0.003 0.72±0.26 
2 7.6± 5.1 0.29±0.30 0.006±0.004 0.78±0.22 
3 7.9± 5.2 0.30±0.30 0.007±0.004 0.79±0.21 

 
  

Table 1. Fitting metrics of the Wood model.
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on dairy cow parameters and their interpretation (Chen et al., 2022). Milkbot performed 
worse than Wood in terms of R2 for each lactation.  

The R2 values suggest that Milkbot and Wood equations  seem to be  a promising 
technique for evaluating the LC of buffalo considering the very few milk points available 
during lactation that negatively affect the results. However, since the models are strongly 
influenced by the choice of the initial priors, more efforts to find suitable values of a, b, 
c, and d can improve the model performance. Finally, like in Holstein domain, the first 
lactations achieved worse result compared to the lactations 2+.

This work reported and compared the performance of Wood and Milkbot equations to 
describe the behaviour of buffalo milk yield. The results suggested that Wood performed 
better than Milkbot in terms of R2 in buffalo cows. Moreover, Wood equation achieved 
better result than Milkbot employing few milk points available. Results are promising, 
but more efforts are needed to establish more accurate priors for buffalo cows. 
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Milkbot analysis

Table 2 reported the result for Milkbot equation.  
Table 2 Fitting metrics of the Milkbot model. 

 
Parity 𝒂̅𝒂 ± 𝝈𝝈𝒂𝒂 𝒃̅𝒃 ± 𝝈𝝈𝒃𝒃 𝒄̅𝒄 ± 𝝈𝝈𝒄𝒄 𝒅̅𝒅 ± 𝝈𝝈𝒅𝒅 𝑹𝑹𝟐𝟐 ̅̅ ̅̅ ± 𝝈𝝈𝑹𝑹𝟐𝟐 

1 13.5±2.4 30.67±0.06 -0.4992±0.001 0.0015±0.0001 0.58±0.26 
2 15.9± 3.2 22.74±0.02 -0.7751±0.001 0.0026±0.0003 0.69±0.22 
3 17.1± 3.6 25.07±0.75 0.0039±0.002 0.0029±0.0003 0.69±0.20 
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The nutritional metabolic demands and foetal development needs of pregnant goats 
carrying multiples (≥3 foetuses) are significantly different from those of single and twin 
pregnancies, including requirements for energy, protein, and minerals. Early prediction 
of the number of foetuses can allow for timely adjustment of management practices 
for goats pregnant with multiples. In this study, milk samples from 348 pregnant Alpine 
goats were collected and analysed for PAG concentrations during early (10–43 days), 
mid (49–78 days), and late (85–94 days) pregnancy. To evaluate the number of foetuses 
in Alpine goats during early pregnancy and to assist dairy farmers in corresponding 
reproductive management, receiver operating characteristic (ROC) curve analysis 
was used to determine the sensitivity, specificity, and area under the curve (AUC) for 
different PAG concentration thresholds at various days of pregnancy. In this research, 
the fatal number of 1, 2, and 3 or more kids accounted for 21%, 71%, and 8% of total 
pregnant goats, respectively. The results showed that at 49 days of pregnancy, a milk 
PAG threshold of 1.208 for determining multiple pregnancies had a sensitivity of 100%, 
a specificity of 80.6%, and an AUC of 0.903; at 57 days of pregnancy, a milk PAG 
threshold of 2.643 resulted in a sensitivity and specificity of 100% with an AUC of 1. 
Moreover, the Youden index at 57 days was higher than at 49 days (1 vs. 0.806). We 
then used Canonical Discriminant Analysis (CDA) to evaluate the significant differences 
between the groups of multiple and single or twin pregnancies based on different 
milk PAG concentration thresholds and days of pregnancy. Starting from 49 days of 
pregnancy, the Wilk’s Lambda value was 0.786, indicating a significant difference in 
milk PAG concentrations between goats with multiples and those with single or twin 
foetuses (P<0.01); at 57 days of pregnancy, the Wilk’s Lambda value was 0.104, 
denoting a highly significant difference (P<0.001). It is concluded that 49 to 57 days 
of pregnancy are effective timepoints to use milk PAG concentrations to differentiate 
the number of foetuses in pregnant Alpine goats.

Keywords: Alpine goats, pregnancy-associated glycoprotein, foetal number. 
Presented at the ICAR Anual Conference 2024 in Bled at the Session 7: Breeding for 
agroecological transition in sheep and goats.
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Nutritional metabolism and foetal development requirements of goats carrying multiple 
foetuses (≥ 3 foetuses) are significantly different from those of single and twin 
pregnancies, including energy, protein, and mineral requirements, and the energy 
demand might gradually increase with gestational days (El-Sayed et al., 2022; Mongini 
and Van Saun, 2023). Insufficient energy intake may cause increased incidence of 
ketosis and toxaemia in ewes (Ji et al., 2023), so early determination of pregnancy 
numbers in ewes and providing appropriate care might reduce the incidence of disease 
(Dinç et al., 1994).

Pregnancy-associated glycoproteins (PAG) are members of the inactive aspartic 
proteinase family and secreted by binucleated cells in the ruminants placental nutritive 
layer (Singh et al., 2019a). Plasma caprine pregnancy-associated glycoprotein (caPAG) 
concentration started to increase at 22 days of gestation, reached the peak at 45 days of 
gestation, and rapidly declined after parturition, reaching baseline at 14 days postpartum 
(Singh et al., 2019a). Additionally, plasma PAG concentration in ewes carrying twins 
was significantly higher than those carrying singles at 28 days of gestation (Singh et al., 
2019a), with concentrations in twins being 1.4-1.8 times higher than those in singles in 
the mid and late gestation (Singh et al., 2019a). As above, it is evidence that plasma 
PAG concentration is influenced by gestation and number of foetuses.

The objective of the experiment is to collect daily milk samples from Alpine goats after 
artificial insemination to measure PAG concentration in milk, determine the threshold 
for differentiating the number of foetuses by milk PAG concentration and confirm the 
optimal time point as a basis for foetus’s number prediction.

The data in this study were derived from 348 Alpine multiparous goats (3-5 pregnancies). 
Pregnancy detection was performed by ultrasound (ALOKA Prosound 2, Japan) 
between days 45 and 50 post-breeding. Pregnancy was confirmed based on the 
visualization of embryos, foetal membranes, and foetuses via ultrasound. Goats 
confirmed pregnant would advance to the next experiment, and the number of foetuses 
was recorded. The proportion of singles, twins and triplets are 21%, 71%, and 8%, 
respectively. Milk samples were collected from 10 days post-breeding and weekly until 
day 94 of pregnancy. Collected 1 mL of milk into sterile centrifuge tubes before milking 
and stored at 4°C before being sent to the milk testing laboratory of the Northern Branch 
of the Livestock Research Institute, Ministry of Agriculture. Samples were kept at room 
temperature before testing.

The measurement of PAG concentration in milk samples was performed by commercially 
available antigen capture enzyme-linked immunosorbent assays (ELISA) (IDEXX 
Laboratories, Inc., Westbrook, Maine, USA). There are 2 wells for positive control 
(PC) and 2 wells for negative control (NC) in each 96-well plate. Incubated the 96-well 
plate in a 37°C oven with agitation for 2 hours, and measured the optical density (OD) 
of samples in 96-well plate at 450 nm and 630 nm wavelengths by a SpectraMax® 
Absorbance Reader CMax Plus (USA), and calculated the average values of PC and NC 
as PC mean and NC mean. The validity of the results was confirmed by the difference 
between PC mean and NC mean being more than 0.5 and NC mean being below 0.2. 
The PAG concentration in milk was calculated by subtraction of the NC mean with the 
OD value of the samples as PAG (sample-negative) value. A difference more than 
0.25 (including 0.25) was considered as positive, indicating pregnancy.

Introduction

Material and 
methods

Management of 
experimental animals 
and collection of milk 
sample

Analysis of PAG 
concentration in milk 
samples



297

ICAR Technical Series no. 28

Chen et al.

For statistical analysis of milk PAG concentration in Alpine goats at different pregnancy 
days, receiver operating characteristic (ROC) analysis were used to establish a 
predictive model for multiple pregnancies. The area under the curve (AUC) was used 
to determine the optimal prediction time point for the highest accuracy in predicting 
multiple pregnancies in Alpine goats. The optimal cutoff point was determined based 
on the maximum value of the Youden index = sensitivity + specificity - 1. Subsequently, 
canonical discriminant analysis (CDA) coefficients were evaluated based on linear 
combinations of various variables to confirm the accuracy between different sampling 
time points (10, 33, 43, 49, 57, 65, 71, 78, 85, and 94 days of pregnancy). Wilk’s Lambda 
value was to assess overall significance of multiple pregnancies on PAG concentration 
in Alpine goat milk at different pregnancy days. Wilk’s Lambda value was ranging from 
0 to 1. When Wilk’s Lambda value is closer to 0, it can be considered that multifetal 
pregnancies have a significant influence on Alpine goat milk PAG concentration at 
different pregnancy days.

To confirm the number of pregnancies in Alpine goats in early gestation, this experiment 
collected milk samples from 348 pregnant Alpine goats during early pregnancy (10-43 
days), mid-pregnancy (49-78 days), and late pregnancy (85-94 days). This experiment 
calculated the milk PAG concentration thresholds at different pregnancy days by ROC 
curve to verify the accuracy of multifetal pregnancies determination. Results showed 
that while the milk PAG concentration threshold is 1.208, the sensitivity is 100%, 
specificity is 80.6% and an AUC is 0.903 at 49 days of pregnancy. At 57 days of 
pregnancy, the milk PAG threshold is increase to 2.643, the sensitivity and specificity 
are both 1, and AUC is 1. Furthermore, using the Youden index as the criterion for 
determining the optimal cutoff timepoints. Results showed that Youden index values are 
of 0.29, 0.67, 0.806, and 0.806 at 10, 33, 43, and 49 days of pregnancy, respectively. 
The Youden index values were all 1 at 57, 65, 71, 78, 85, and 94 days of pregnancy. 
This indicated that the most effective timepoints to confirm multifetal pregnancies by 
milk PAG is between 49 and 57 days of pregnancy.

Statistical analyses

Results

Evaluation of the 
ROC curve on milk 
PAG concentration 
thresholds at 
different pregnancy 
days in Alpine goats

Table 1. Result of receiver operating characteristic curve (ROC curve) analysis [sensitivity (Se), specificity 
(Sp) and area under curve (AUC)] of milk pregnancy-associated glycoprotein (PAG) ELISA assessment for 
determination of triple foetuses based on different threshold values of circulating PAG concentration (S-N) at 
different days of gestation in Alpine goats.

Table 1. Result of receiver operating characteristic curve (ROC curve) analysis [sensitivity (Se), specificity 
(Sp) and area under curve (AUC)] of milk pregnancy-associated glycoprotein (PAG) ELISA assessment for 
determination of triple foetuses based on different threshold values of circulating PAG concentration (S-N) at 
different days of gestation in Alpine goats 
 

Days of 
pregnancy 

PAG 
threshold 

values 
Se (%) Sp (%) 

AUC and P 
value 

95% Confidence interval 
Lower 
bound 

Upper bound 

10 0.024 100.0 29.0 0.452 (P = 0.779) 0.113 0.790 
33 0.300 100.0 67.7 0.720 (P = 0.006) 0.563 0.878 
43 0.446 100.0 80.6 0.828 (P < 0.001) 0.696 0.960 
49 1.208 100.0 80.6 0.903 (P < 0.001) 0.785 1.000 
57 2.643 100.0 100.0 1.000 (P < 0.001) 1.000 1.000 
65 3.326 100.0 100.0 1.000 (P < 0.001) 1.000 1.000 
71 3.421 100.0 100.0 1.000 (P < 0.001) 1.000 1.000 
78 3.756 100.0 100.0 1.000 (P < 0.001) 1.000 1.000 
85 2.126 100.0 100.0 1.000 (P < 0.001) 1.000 1.000 
94 3.146 100.0 100.0 1.000 (P < 0.001) 1.000 1.000 
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To assess the milk PAG concentration of multiple pregnancies (twins or triplets) 
versus single or twin pregnancies in Alpine goats at different gestational days, CDA 
was conducted. Results showed that on 49 days of pregnancy, the Wilk’s Lambda 
value was 0.786, indicating a significant difference in milk PAG concentration between 
multiple pregnancies and single or twin pregnancies (P < 0.01). On 57 days of 
pregnancy, the Wilk’s Lambda value was 0.104, indicating an extremely significant 
difference in milk PAG concentration between multiple pregnancies and single or twin 
pregnancies (P < 0.001). It demonstrated that from 49 to 57 days of pregnancy, milk 
PAG concentration can effectively differentiate between multiple pregnancies and 
single or twin pregnancies.

Evaluation of 
CDA on milk PAG 
thresholds at 
different pregnancy 
days in Alpine goats 
to differentiate the 
number of foetuses

Table 2. Canonical discriminant analysis (CDA) results for discrimination of single or twin foetuses from triple foetuses with milk 
pregnancy-associated glycoprotein (PAG) enzyme-linked immunosorbent assay (ELISA) assessment at different days of pregnancy 
in Alpine goats

 
Table 2. Canonical discriminant analysis (CDA) results for discrimination of single or twin foetuses from triple 
foetuses with milk pregnancy-associated glycoprotein (PAG) enzyme-linked immunosorbent assay (ELISA) 
assessment at different days of pregnancy in Alpine goats 
 

Canonical discriminant 
function coefficients 

Days of pregnancy 

10 33 43 49 57 65 71 78 85 94 
Wilk’s Lamba value 0.996 0.993 0.996 0.786** 0.104*** 0.179*** 0.255*** 0.317*** 0.278*** 0.068*** 

Unstandardized 
coefficients 

5.648 4.110 2.276 2.369 4.213 2.689 2.198 1.826 3.469 4.802 

Group 
centroids 

Single or 
dual 
foetuses 

0.020 -0.025 -0.020 -0.157 -0.885 -0.647 -0.515 -0.443 -0.486 -1.115 

 Triple 
foetuses 

-0.207 0.253 0.208 1.627 9.150 6.684 5.324 4.581 5.022 11.526 

Eigenvalue 0.004 0.007 0.004 0.272 8.608 4.594 2.915 2.158 2.593 13.659 

% of variance 

Canonical correlations 
100 100 100 100 100 100 100 100 100 100 

0.066 0.081 0.067 0.463 0.947 0.906 0.863 0.827 0.850 0.965 

1 ** indicates a significant difference (P < 0.01). 
2 *** indicates a highly significant difference (P < 0.001). 

 
 

Goats carrying multiples requires precision feeding management to face the 
metabolic demands. If goats carrying multiples didn’t intake sufficient energy to meet 
metabolic demands, lipid mobilization is an adaption, resulting in the increase of blood 
non‑esterified fatty acids (NEFA) and β-hydroxybutyrate (BHBA) concentration (2.1 and 
3.7 times, respectively) than those carrying single pregnancies before delivery (Moallem 
et al., 2012). Excessive related metabolites could be transferred into ketones in the 
liver, increasing the incidence of pregnancy toxaemia in ewes (Ji et al., 2023). PAG 
has been studied as an indicator for early pregnancy diagnosis and even predicting 
the number of foetuses in ruminants (Hussein et al., 2017). Therefore, detecting the 
changes in milk PAG concentration during pregnancy might be a way to differentiate 
the number of foetuses, improve the nutritional management of ewes carrying multiples 
and reduce the incidence of disease.

In the experiments showed that at 10, 33, and 43 days of pregnancy, the sensitivity was 
100%, but the specificity was only 29.0%, 67.7%, and 80.6%, respectively, with AUC of 
0.452, 0.720, and 0.828, indicating that the accuracy of detecting the number of foetuses 
at 10, 33, and 43 days of pregnancy was low. At 49 days of pregnancy, with a milk PAG 
concentration threshold of 1.208, the sensitivity was 100%, specificity was 80.65%, and 
AUC was 0.903; while at 57 days of pregnancy, the milk PAG concentration threshold 
was 2.643, with both sensitivity and specificity at 100% and AUC at 1, suggesting that 
at 57 days of pregnancy, goats carrying multiples could be identified accurately. Yang 
et al. (2022) showed that milk PAG concentration in goats carrying multiples started 
increasing at 49 days of pregnancy compared to single or twin pregnancies. In the 
present study, the determination of milk PAG concentration at 49 days of pregnancy 
has showed a certain degree of accuracy (80.65%), in agreement with the results in 
Yang et al. (2022). Although the threshold in the present study was higher than Singh 
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et al. (2019a)’s value of 0.830, it might attribute to the threshold in Singh et al. (2009a) 
based on PAG in blood and the differentiation between single and twin pregnancies. 
Furthermore, the target breed in Singh et al. (2019a) was Indian Barbari goats, 
whereas the present study was focused on Al-Bayda goats, contributing to differences 
in PAG concentrations (De Carolis et al., 2020). Additionally, we measured milk PAG 
concentration, with the threshold of 1.208 to differentiate between singles and twins 
or multiples. Some studies showed that PAG in blood was about 1.9-2.0 times higher 
than in milk (Singh et al., 2019b), indicating that blood PAG threshold of 0.830 divided 
by 2 was the milk threshold of about 0.415. The value (0.415) was close to the value of 
singles and twins in Yang et al. (2022), presuming that the number of foetuses might 
be a main factor of PAG concentration threshold. Moreover, it was noteworthy that the 
timepoints which Singh et al. (2019a) distinguished the number of foetuses was over 
45 days of pregnancy. This result was consistent with Yang et al. (2022), pointing out 
PAG concentration in mid pregnancy was related to number of foetuses. Therefore, it 
could serve as evidence to determine the timepoints of the number of foetuses (49 to 
57 days of pregnancy).

In the present study, Canonical Discriminant Analysis (CDA) was used to measure 
milk PAG concentration at different pregnancy days to distinguish between singles, 
twins, and multiples. Results showed that at 49 days of pregnancy, Wilk’s Lambda 
value was 0.786, indicating a significant difference (P < 0.01) in milk PAG concentration 
between goats with single or twin pregnancies and with multiple pregnancies. At 
57 days of pregnancy, Wilk’s Lambda value decreased to 0.104, indicating an extremely 
significant difference (P < 0.001) in milk PAG concentration between goats with 
singles or twins and with multiples. This suggested that milk PAG concentration could 
start to differentiate the number of foetuses between 49 and 57 days of pregnancy. 
The analysis by Youden index to determine the optimal detection timepoints was 
also between 49  and 57 days of pregnancy. Also, other studies indicated that at 
45 days of pregnancy, it was a significant difference in serum PAG concentration 
in singles, twins and triplets, with concentrations of 58.23 ± 2.64, 48.55 ± 2.86, and  
34.77 ± 1.53 ng/ml, respectively.

These results suggested that serum PAG concentration can be used to differentiate 
the number of foetuses at 45 days of pregnancy (Hussein et al., 2017). Similarly, 
the difference of PAG concentration between the number of foetuses, especially in 
multiples, was also mentioned in Yang et al. (2022). However, Hussein et al. (2017) 
measured goats serum PAG concentration, while Yang et al. (2022) used milk 
samples from pregnant goats. Although the target substances in these two studies 
were different, there was a strong positive correlation (R2 = 0.64) between blood 
and milk PAG concentrations (Singh et al., 2019a). Additionally, both blood and milk 
PAG concentrations showed high accuracy in determining pregnancy after 32 days 
of pregnancy, with accuracies 92% and 89%, respectively. Based on the studies, the 
timepoints for blood and milk PAG concentrations to determine the number of foetuses 
were quite close, indicating that milk PAG concentration can be used to determine the 
number of foetuses between 49 and 57 days of pregnancy.

According to the above, at 49 days of pregnancy, the milk PAG concentration could be 
used to detect for multiple pregnancies in goats. Additionally, at 57 days of pregnancy, 
milk PAG concentration could differentiate between single and multiple pregnancies in 
goats. Therefore, 49 to 57 days of pregnancy is the most ideal time for detecting milk 
PAG concentration and determining the number of foetuses in Alpine goats. These 
findings will enable farmers to confirm the number of foetuses in early pregnancy, 
apply for precise feeding and management and reduce the incidence of metabolic 
disorders in goats.

Conclusion
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The aim of this study was to estimate variance components for ewe litter size in two 
autochthonous Slovenian sheep breeds, the Jezersko-Solčava sheep (JS) and the 
Improved Jezersko-Solčava sheep (JSR). Both breeds are fertile all year round and 
are mainly bred for lamb production. Litter size records were collected from the farms 
according to the breeding programs for 17,071 ewes with 79,387 lambings (40,172 - 
JS, 39,215 - JSR) in the period from 2007 to 2023. A pedigree file with 24,425 animals 
was created from the Central database for small ruminants in Slovenia. The fixed 
part of the model was analysed with the SAS statistical package using the MIXED 
procedure and included the breed effect (JS, JSR), ewe parity (from 2 to 10) and the 
year-season interaction (1, 2, 3, …, 68), while the lambing interval was included as a 
linear covariate. The variance components were estimated using the REML method 
implemented in the VCE-6 program. The random part of the model consisted of the 
additive genetic effect, the permanent environmental effect and the flock effect. JSR 
ewes had a significantly higher litter size (1.39 ± 0.01 lambs per litter) compared to 
JS ewes (1.26 ± 0.01 lambs per litter). Litter size was significantly the lowest in the 
second parity (1.22 ± 0.01 lambs per litter) and increased until the sixth parity (1.36 ± 
0.01 lambs per litter). Thereafter, it gradually decreased until the tenth parity (1.33 ± 
0.01 lambs per litter). Litter size increased with increasing lambing interval and was 
also affected by year-season interaction. The estimated heritability for litter size was 
0.06. The effect of permanent environment explained 0.02 variability, while the flock 
effect explained 0.11 variability in litter size. As expected, the variance components 
including estimated heritability for litter size were relatively low. Nevertheless, it is 
expected that they could contribute to more effective selection in the future, and for 
this reason the estimated variance components will be used in predicting breeding 
values for ewe litter size from 2024 onwards. 

Keywords: parity, lambing period, heritability, permanent environmental effect, flock 
effect. 
Presented at: Session 7: Breeding for agroecological transition in sheep and goats

Fertility traits are economically very important factors which affects the profitability of 
lamb production. Apart from lambing interval, the most important fertility trait is ewe’s 
litter size. A higher litter size could increase the profit of farmer through a higher quantity 
of lamb meat produced per ewe. In Slovenia, the most widespread sheep breeds 
are two autochthonous breeds - the Jezersko-Solčava sheep (JS) and the Improved 
Jezersko-Solčava sheep (JSR). Both are bred mainly for lamb production and are 
fertile all year round. They are distinguished by several phenotypic traits as well as 
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in some production traits such as litter size. Nevertheless, �JSR sheep is the result of 
improving of JS sheep with the Romanov sheep in order to achieve better fertility and 
this goal was achieved (Cividini et al., 2024a; Cividini et al., 2024b). Still, no study 
about variance components for litter size in sheep breeding has been made in Slovenia.

The main objective of the study was to determine the main factors affected the litter 
size and to estimate variance components for litter size in two Slovenian sheep breeds, 
the Jezersko-Solčava sheep, and the Improved Jezersko-Solčava sheep.

Records were provided by the breeding programs of JS and JSR (Cividini et al., 2024a; 
Cividini et al., 2024b) for sheep collected from the year 2007 to the year 2023. Data 
about ewe’s breed, flock, lambing date, parity, and litter size were acquired from the 
Central Database for Small Ruminants in Slovenia. Only ewes with lambing interval 
between 150 and 550 days were included in the analysis. Ewes with more than 
10 parities were excluded. Due to a low number of quadruplets, they were counted 
to triplets. After the records control, 17,071 ewes with 79,387 lambings (40,172 JS, 
39,215 JSR) were included in the analysis. A pedigree file with 24,425 animals was 
also created from the Central Database for Small Ruminants. The fixed part of the 
model was analysed with the SAS statistical package using the MIXED procedure 
(SAS Institute Inc., 2014). The model included breed (JS, JSR), parity (2, 3, 4, 5, 6, 7, 
8, 9, 10), and the year-season interaction (1, 2, 3, …, 68), while the lambing interval 
was included as a linear covariate. The variance components were estimated using 
the REML method implemented in the VCE-6 program (Groeneveld et al., 2010). 
The random part of the model consisted of the additive genetic effect, the permanent 
environmental effect and the flock effect.

Table 1 shows p-values for fixed effects included in the model for litter size. All effects 
(breed, parity, year-season interaction and lambing interval) significantly affected litter 
size (P<0.001)

The litter size of JS ewes and JSR ewes is presented in Table 2. JSR ewes had 
significantly higher litter size (1.39 ± 0.13 lambs per litter) than JS ewes (1.26 ± 0.12 
lambs per litter). This was expected because JSR sheep is the result of improving JS 
sheep with the Romanov sheep in order to achieve better fertility.

Ewe’s litter size by parity is shown in Figure 1. Litter size was significantly the lowest 
in ewes at the second parity (1.22 ± 0.01 lambs per litter) and increased until the sixth 
parity (1.36 ± 0.01 lambs per litter). Thereafter, it gradually decreased until the tenth 
parity (1.33 ± 0.01 lambs per litter).

Estimated variance components for litter size are presented in Table 3. Estimated 
heritability was 6%, while permanent environmental effect explained 2% of the 
variability. The flock effect explained 11% of variability in litter size, while 81% of 
phenotypic variance remained in the residual. Habtegiorgis et al. (2023) estimated 
genetic parameters for some growth and fertility traits in Dawuro sheep in Ethiopia. The 
estimate of direct heritability for litter size was 0.10, which is higher in comparison with 
the present study (0.06). The estimate for permanent environmental effect was 0.31, 
which is quite high compared to the present study (0.02). In the study of Hamman et 
al. (2004), permanent environment also explained a higher proportion of phenotypic 
variance (0.05) while estimated heritability (0.04) was slightly lower than in our study. 
However, Schmidova et al. (2014) estimated variance components for litter size in 
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Figure 1. Ewe’s litter size by parity.

 
Table 1. p-values of included effects in the statistical model for ewe’s litter size. 
 

 Effects 
 Breed Parity Year-season interaction Lambing interval 
Litter size <0.0001 <0.0001 <0.0001 <0.0001 

 

Table 1. p-values of included effects in the statistical model for �ewe’s litter size.

 
Table 2. Litter size (LSM ± SE) by the sheep breed. 
 

 Breed (LSM ± SE) 
Jezersko-Solčava sheep Improved Jezersko-Solčava sheep 

Litter size 1.26 ± 0.12 1.39 ± 0.13 

 

Table 2. Litter size (LSM ± SE) by the sheep breed.
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Figure 1. Ewe’s litter size by parity. 
 
 
 

 
 
Table 3. Estimated variance components ratios for litter size of ewes in two Slovenian sheep breeds. 
 

 Variance components (ratios) 
Additive genetic 

effect 
Permanent 

environment Flock Residual 
Litter size 0.06 0.02 0.11 0.81 

 
 

Table 3. Estimated variance components ratios for litter size of ewes in two Slovenian sheep breeds.
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seven sheep breeds and found that the heritability estimate in Šumava sheep and 
Romney sheep was 0.06 while the estimate for permanent environmental effect was 
0.02 which is the same as in our study.

The variance components including estimated heritability for litter size were relatively 
low what was expected. Still, it is expected that they could contribute to more effective 
selection in the future, and for this reason, the estimated variance components will be 
used in predicting breeding values for ewe litter size from 2024 onwards.
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Reduction of greenhouse gas (GHG) emissions, and particularly enteric methane 
(EM) emissions, from ruminant livestock is a global problem faced by all producers. 
In 2015 there were 1.18 billion sheep in the world emitting 158 Mt of carbon dioxide 
(CO2) equivalents of EM, or 6% of the total EM emissions (FAO 2022). Animal breeding 
is a highly cost-effective strategy to achieve reductions in EM and has already been 
included in national plans and Nationally Determined Contributions (NDCS) to achieve 
mitigation targets in several countries (https://unfccc.int/NDCREG). 

An international project (‘Grass To Gas’, 2019-2023) combined expertise and generated 
new knowledge towards the reduction of methane (CH4), a potent GHG, from sheep. 
Proxy measurements were investigated including individual animal feed intake and 
N-alkane measures indoors and at pasture, rumen microbiome-generated data, nuclear 
magnetic resonance (NMR) spectroscopy with plasma and rumen samples, and 
rumen volume by Computer-Tomography (CT), amongst others, in native, improved 
and unimproved sheep breeds and with different feed and forage qualities. Direct 
measurements of CH4, and CO2 from ewes and lambs were compared using portable 
accumulation chambers (PACs), sheep and Greenfeed to enable animal ranking and 
first breeding values for GHG emissions for sheep. Heritabilities (with s.e.) for PAC 
raw CH4 (g/day) were reported as being between 0.26(0.03) and 0.34(0.09) from 
4 countries, with methane intensity CH4 / (CH4+CO2) moles/day having lower values 
[0.21(0.03) to 0.29(0.06)]. Estimates for residual feed intake (RFI) were higher at 
between 0.37(0.08) to 0.45(0.08). As expected, genetic correlations between RFI 
and feed intake were moderate to strong (0.41(0.14) to 0.79(0.09), and low or close 
to zero with body weight or growth. Comparing low vs high RFI progeny of Romane 
sires showed that after 4 generations, the dry matter intake difference between RFI 
lines reached 123 g/day of concentrate and 80 g/day of forage in favour of the efficient 

Abstract

mailto:joanne.conington@sruc.ac.uk
https://unfccc.int/NDCREG


306

Reduce greenhouse gas emissions from sheep

Proceedings ICAR Conference 2024, Bled

line. A larger difference of 20% in feed intake was reported when comparing Australian 
Merino lambs contrasting in RFI. 

The links between RFI, feed intake and CH4 emissions are more complex and require 
further investigation. However, high CH4 was associated with higher levels of feed 
intake with preliminary genetic correlations reported as being between 0.33(0.17) and 
0.43(0.19) and those between CH4 and metabolic body weight being 0.58(0.15) to 
0.68(0.11). The use of routine CT scans enabled retrospective computation of rumen 
volume which has been shown to be moderately heritable. The genetic correlation 
between rumen volume and CH4 is yet to be determined although larger reticulo-rumen 
volumes, as measured by CT scanning, were associated with increased methane 
emissions but not with RFI at the phenotypic level. 

The rumen microbiota is a complex ecosystem, which include bacteria, archaea, 
protozoa, fungi and viruses, that provides ruminants with the ability of digesting fibres in 
plant cell walls into nutrients for the animals. The composition of the rumen microbiota 
did not enhance prediction accuracies over and above more conventional zootechnical 
predictors of feed efficiency for French sheep. In contrast in New Zealand, promising 
results were reported based on rumen microbial composition using high-throughput, 
restriction enzyme-reduced representation sequencing. The EBV accuracies for 
methane yield and RFI were comparable with those achieved only using the animals’ 
genomic information.

Additional results emanating from the project demonstrated that incorporating methane 
emissions into national sheep breeding programmes is a cost-effective mitigation 
measure with significant abatement potential. Importantly, working internationally 
to share protocols, information, knowledge and experience benefits all countries, 
avoiding duplication and fostering shared responsibility to be part of the solution to a 
global problem. A new international project, ‘Sustain Sheep’ (2024-2027) is underway 
to advance and extend our understanding of some of the key issues highlighted in 
this paper. 

Keywords: enteric methane, greenhouse gas, genetic parameters, genetic 
improvement, sheep. 
Presented at the ICAR Anual Conference 2024 in Bled at the Session 8: Global 
challenges in genetic selection for lower methane emission in ruminants

Reduction of greenhouse gas (GHG) emissions, and particularly enteric methane 
(EM) emissions, from ruminant livestock is a global problem faced by all producers. 
Although large ruminants make up the majority of the enteric methane emissions from 
livestock, in 2015 there were 1.18 billion sheep in the world emitting 158 Mt of carbon 
dioxide (CO2) equivalents of EM, or 6% of the total EM emissions (FAO 2022). Animal 
breeding is a highly cost-effective strategy to achieve reductions in EM and has already 
been included in national plans and Nationally Determined Contributions (NDCS) to 
achieve mitigation targets in several countries (https://unfccc.int/NDCREG). Animal 
breeding is a long-term strategy to make cumulative reductions in methane and GHG 
emissions, which are permanent and highly cost-effective, for meat (Lambe, 2022), 
wool (Navajas et al., 2022a) and potentially for dairy sheep.

An international project (‘Grass To Gas’, 2019-2023) combined expertise and generated 
new knowledge towards the reduction of methane (CH4), a potent GHG, from sheep. 
The countries involved in this project all have established national sheep breeding 
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programmes and prior to the onset of the project, were independently measuring 
some or all of the following: individual animal feed intake, RFI, GHG emissions (CO2 
and CH4), N-alkane measures at pasture, rumen microbiome-generated data, NMR 
spectra and rumen volume by Computer-Tomography (CT), amongst others, in native, 
improved and unimproved sheep breeds and with different feed and forage qualities. 
The overall aim of the project was to bring together the collective expertise to validate 
existing protocols, benchmark, and enhance the measurement and analyses of these 
new phenotypes for their development and use in sheep breeding programmes. The 
project also aimed to determine the use of selective animal breeding as a tool for 
GHG abatement, considered in relation to other measures available with modelling 
applicable to one country (UK). Specifically, the objectives were, 

1.	 To validate predictors of feed intake (FI), residual feed intake (RFI) and 
CH4|emissions.

2.	 To compare indoor and outdoor FI and RFI.

3.	 To investigate the opportunity to use genetics and genomics to reduce CH4 
emissions by determining the genetic basis of new phenotypes including rumen 
microbiome.

4.	 To quantity the economic and environmental benefits of more feed-efficient and 
lower GHG-emitting sheep, and ensure that the relevance of the project from farm 
to international impact scale.

Residual feed intake (RFI) is a measure of feed efficiency defined by Koch et al. 
(1963) as the difference between actual and predicted dry matter feed intake, based 
on average daily gain and metabolic body weight. In France, the methodology used to 
collect feed intake and feed efficiency data in 951 male Romane lambs is documented 
in Tortereau et al., 2020, using an 8 week testing period per batch of between 92‑149 
lambs at around 70d of age and weighed at the start and end of the trail period. In 
Uruguayan Merino sheep, phenotypic records of 1138 animals with feed intake, and 
1120 with RFI were recorded using Intergado® automated feeders as described by 
Amarilho-Silveira et al., 2022 and genetic parameters analysed according to the 
methodology by Marques et al 2024. In New Zealand maternal sheep, individual 
measures of feed intake, feeding behaviour (length and duration of eating events) 
CH4 and CO2 were generated on 986 growing maternal ewe lambs sourced from three 
pedigree recorded flocks, the methodology for which was reported by Johnson et al., 
2022. Norway compared 40 Old Norwegian with Norwegian White dry adult ewes fed 
different silage qualities as described by Aby et al., 2023a. In Ireland, 242 individual 
feed intake measurements taken at grass from 242 Texel-cross lambs at grass was 
measured using the N-alkane technique as described by McGovern et al., 2021 and in 
the UK, 250 indoor- and outdoor- reared Texel-cross lambs were used to compare sire 
ranking of full-sib offspring reared in the 2 systems as described by Conington et al., 
2022. More detail on the predictions of feed intake and methane emissions in sheep 
using different proxies has been provided in Le Graverand et al., 2024. 

 

Direct methane measurements were undertaken using different technologies. Portable 
accumulation chambers (PACs) were used in Norway, New Zealand and Ireland, 
using the protocols first developed in Australia (Goopy et al., 2011, applied in New 
Zealand by Jonker et al., 2018, and validated by O’ Connor et al., 2021. A PAC is an 
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airtight chamber in which an animal is kept for less than one hour. Emissions of CO2 
and methane are estimated based on the difference in the concentration of gases 
when the animal is entering and leaving the PAC. Temperature and pressure are also 
measured, and with the body weight of the animal, are used to calculate the emission 
of these two gases in grams per day. In Uruguay, PACs to measure GHG emissions 
were used to measure 930 Merino as described by Marques et al., 2022; RFI and CH4 
have been measured at post-weaning in Corriedale, Dohne Merino, Merelin and Texel 
lambs since 2018. Animals evaluated in Uruguay belong to the Selection Nucleus 
(Australian Merino), Information Nucleus (Corriedale, Dohne Merino, Texel) and 
commercial stud-flocks (all breeds) and are strongly connected with populations in the 
genetic evaluation (performance recorded) (Navajas et al., 2022)In France, the C-lock® 
GreenFeed individual small animal measurement system was used to quantify daily 
CH4 and CO2 emissions from individual animals as described by Tortereau et al., 2023. 

In the UK, and New Zealand, Computer Tomography (CT) is used routinely as part of 
national meat sheep breeding programmes to quantify, with almost perfect precision, the 
body composition of elite rams. Using additional data generated as part of that process, 
the rumen size was determined to estimate the correlations between reticulo‑rumen 
size and CH4 emissions, as documented by Lambe et al., 2022 and Hitchman et al., 
2023. CT-measured rumen volumes were measured within the Grass to Gas project 
in the UK (from unselected Texel-crossbred lambs) and France (from Romane lambs 
divergently selected for RFI) and related to feed intake and efficiency measures. In 
Norway, rumen tissue volume was undertaken on samples collected post-mortem as 
described by Åby et al., 2023b. 

Different traits were considered as proxy measurements for feed intake, feed efficiency 
or methane emissions depending on the study. Most of the proxy traits were recorded 
during feed intake trials, such as bodyweight or body composition. In Scotland, New 
Zealand and Norway, the number of feeding events per day were collected and tested 
as a possible proxy. In France and New Zealand, blood and rumen fluid samples 
were collected during (New Zealand) or at the end of the intake trial (France). DNA 
was extracted from blood samples, and genotyping was performed using the Illumina 
50K SNP chip. Ruminal microbiota was assessed through meta-barcoding or meta-
genomics in France (Le Graverand et al., 2023) and New Zealand (Hess et al., 2023), 
respectively. For meta-barcoding to determine the rumen microbiota composition, to 
predict feed intake, the details are provided in Le Graverand et al., 2023a. In New 
Zealand, metagenome profiles were generated using restriction enzyme-reduced 
representation sequencing (RE-RRS) (Hess et al., 2020).

The use of animal breeding as a tool for GHG reduction in small ruminants has not 
received serious attention by some Governments as a tool for the estimation of the 
abatement potential, despite the unequivocal evidence of the contribution of animal 
breeding to improve animal efficiency. The contribution to the reduction in GHG 
emissions in 5 Irish sheep breeds reared in 4 flocks was summarised by McHugh 
et al., 2022 and the difference in high- vs low-genetic merit Irish flocks was reported 
by Farrell et al., (2022). Bioeconomic modelling to compare profitability of high- vs 
low‑emitting sheep flocks was used in the study. 
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In the UK, animal breeding for efficiency and directly breeding to reduce CH4 emissions 
were included in new marginal abatement cost curves (MACC) for sheep which was 
estimated in terms of the cost-effectiveness and abatement potential.

McGovern et al., (2024) provides full details of summary statistics and the models used 
to analyse the phenotypic results from each participating country. Table 1 summarises 
the heritability estimates for traits used in the estimation of feed efficiency and GHG 
emissions. Full details of the genetic models to estimate these parameters can be 
seen in the respective publications. 

The genetic correlations of RFI with other traits are summarised in Table 2. They confirm 
a strong association of RFI with feed intake, and low, or close to zero correlation with 
body weight and growth during the feed efficiency tests.

The comparison of progeny of high feed efficiency (low RFI) and low efficiency (high RFI) 
Romane sires, after one generation of selection showed that improving RFI represents 
3% less concentrate per day at the same level of performance (Tortereau et al., 2020). 
After 4 generations of selection, these differences between the 2 RFI lines reach 123 g 
of concentrate and 80 g of forage in favour of the efficient line (Marie-Etancelin et al., 
2023). A larger difference of 20% in feed intake was reported by De Barbieri et al. 
(2020), when comparing Australian Merino lambs of contrasting RFI. In Norway, Åby 
et al. (2023a) found differences in methane emissions between two Norwegian breeds 
which were strongly linked to feed intake. The breed differences were still present after 
adjusting for feed intake, which suggest that other factors such as rumen size and 
anatomy may influence methane emissions. In France, comparisons of RFI lines in 
term of GHG showed that the most efficient animals (with lower feed intake) produce 
significantly more CH4 than the least efficient animals, whether in males fed mixed 

Results

1 

 
Table 1. Heritability estimates (standard error) for residual feed intake (RFI), traits used for the estimation of 
RFI and individual methane (CH4) and carbon dioxide (CO2) emissions  

Study 
Johnson  

et al. (2022) 
Hickey  

et al. (2022)1 
Tortereau  

et al. (2020) 
Marques  

et al. (2022) 
Jakobsen  

et al. (2022) 

Breed NZ maternal  
Several  

Romane 
Australian 

Merino  
Norwegian 

White 
RFI 0.42 (0.09) -- 0.45 (0.08) 0.37 (0.08) -- 
Feed intake  0.35 (0.10) -- 0.28 (0.08) 0.41 (0.08) -- 

Average daily gain 0.42 (0.10) 
-- 

0.22 (0.07) --  
0.19(0.01)5 

0.20(0.01)6 
Metabolic body weight 0.44 (0.11) -- --   -- -- 
Body weight  --  -- 0.21 (0.07)2 0.41 (0.01)3 -- 
Backfat thickness by US 0.57 (0.09) -- 0.39 (0.08) 0.32 (0.04) -- 
Muscle depth by US  --  0.41 (0.08) 0.39 (0.04)4 -- 
CH4 (g/day) 0.32 (0.08) 0.26 (0.03)  -- 0.34 (0.09) 0.17(0.04) 
CO2 (g/day) 0.32 (0.08) --  --  -- -- 
CH4/(CH4 + CO2) 0.29 (0.06) 0.21 (0.03)  --  -- -- 

1Gas measurement by Respiration Chambers, the other studies used PACs.  
2 Includes body weight at the end of feed efficiency test;  
3 body weight at shearing;  
4 muscle area.  
5Direct & maternal h2 summed for 42d weight  
6Direct & maternal h2 summed for 140d weight.  
7 CH4 g/hr  

  
 
  

Table 1. Heritability estimates (standard error) for residual feed intake (RFI), traits used for the estimation of RFI 
and individual methane (CH4) and carbon dioxide (CO2) emissions.
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diet or in females on pasture (Tortereau et al., 2023). Table 3 confirms that methane 
production is closely associated with feed intake. Higher feed efficiency measured by 
RFI (i.e. low RFI) is associated with lower feed intake, which lead to the hypothesis 
that increased efficiency also means less methane production, although these results 
are not conclusive from our studies.

Predictions of host feed efficiency from 16S (assessed as the average correlation 
between actual RFI and its prediction) ranged from 0.11 under a concentrate diet to 
0.35 under a mixed diet, while predictions from fixed effects varied from 0.31 to 0.55, 
respectively (Le Graverand et al., 2023a). When young rams fed concentrate only, 
SNPs were the best predictors of RFI (accuracy of 0.44), but blood NMR spectra 
were also promising with an accuracy of 0.33 (Le Graverand et al., 2023b). In New 
Zealand, accuracy of methane and feed intake prediction was significantly improved 

2 

Table 2. Genetic correlation (S.E.) between RFI and performance traits recorded in feed efficiency tests. 
 

 Study/trait Johnson et al. (2022) Tortereau et al. (2020) Marques et al (2022) 
Feed intake  0.41 (0.14) 0.78 (0.08) 0.79 (0.09) 
Metabolic body weight -0.23 (0.17) -- -- 
Body weight  -- -0.03 (0.19)1 -0.22 (0.14)2 
Average daily gain -0.09 (0.17) -0.03 (0.19) -- 
Ultrasonic Backfat 
thickness 

-0.14 (0.15) 0.00 (0.16) -0.17 (0.16) 

Ultrasonic Muscle depth -- -0.30 (0.16) -0.15 (0.20)3 
1Body weight at the end of feed efficiency test;  
2Body weight at shearing;  
3Muscle area. 

 
 
  

Table 2. Genetic correlation (S.E.) between RFI and performance traits recorded in feed efficiency tests.

3 

Table 3. Genetic correlations (standard errors) of methane emissions (CH4), carbon dioxide (CO2), total 
greenhouse gas (CH4+C02) and methane intensity CH4/(CH4 + CO2) with RFI and traits recorded in feed 
efficiency test 
 

 CH4 CO2 CH4 + CO2 CH4/(CH4 + CO2) 

Johnson et al. (2022) 

RFI -0.28 (0.16) 0.05 (0.17) 0.04 (0.17) -0.41 (0.15) 

Feed intake 0.33 (0.17) 0.59 (0.14) 0.60 (0.14) -0.24 (0.09) 

Metabolic body weight 0.68 (0.11) 0.62 (0.13) 0.73 (0.08) -0.06 (0.08) 

Average daily gain 0.34 (0.10) 0.06 (0.19) 0.07 (0.19) 0.10 (0.16) 
Backfat thickness by US -0.04 (0.15) -0.33 (0.15) -0.32 (0.15) 0.06 (0.08) 

Marques et al., (2022) 

RFI 0.43 (0.19) -- -- -- 

Feed intake 0.79 (0.09) -- -- -- 

Body weight 0.58 (0.15) -- -- -- 

ADG --    
Ultrasonic backfat 0.37 (0.17) -- -- -- 
Ultrasonic Muscle 0.36 (0.15)    

 
 
 
  

Table 3. Genetic correlations (standard errors) of methane emissions (CH4), carbon dioxide (CO2), total greenhouse 
gas (CH4+C02) and methane intensity CH4/(CH4 + CO2) with RFI and traits recorded in feed efficiency test

Proxy traits 

Microbiome
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by including a microbial relationship matrix in the linear mixed model alongside the 
genomic relationship matrix (Hess et al., 2023). Bilton et al., 2022 further showed that 
the genetic correlation between direct measures from PAC chambers and methane 
predicted from rumen microbial profiles was 0.76 (s.e. 0.12) and 0.64 (s.e. 0.11) for 
feed intake.

Rumen volume measurements, taken from CT scans in the UK and France, were 
significantly correlated with body weight, growth and feed intake, and in the UK also 
with age and muscle depth. However, no significant link between RFI and rumen volume 
was identified. Selecting lambs on RFI under a concentrate diet in the growing period 
did not seem to impact rumen volume later in life. These results suggest that rumen 
volume cannot be proposed as a proxy of feed efficiency. However, it might be tested 
in further analyses as a proxy of feed intake.

In general across all available data sets from the project, when investigating various 
proxy measurements (Le Graverand et al., 2024), validation prediction accuracies 
were higher for feed intake than for feed efficiency criteria (residual feed intake and 
feed conversion ratio). The best predictions for feed intake were obtained when body 
weight and the average number of feeding events per day were included in the models 
(R²=0.78). Methane emissions were predicted with the highest accuracy when feed 
intake was considered among the proxies, alongside body weight, average daily 
live-weight gain and ultrasound measured body composition (R²=0.34). Prediction 
accuracies for methane emissions obtained with metagenome were higher than with 
the sheep genome, although this accuracy remains quite low (r=0.32).

 

The results from the Irish study comparing high-vs low- genetic merit flocks for 
differences in profitability and predicted GHG emissions, indicated that the flock of 
high genetic merit was more profitable with a higher net profit of €18/ewe than the flock 
of low genetic merit (Farrell et al., 2022). Although the GHG emissions, assessed by 
life-cycle analysis (LCA) showed an increase of 2.9% in total emission (expressed as 
CO2eq), the emissions intensity (kg CO2eq/ kg carcass weight sold) was 6.9% lower 
for the flock with high genetic merit. In the UK, 

the results of the marginal abatement cost curve (MACC) in terms of cost effectiveness 
(CE) and abatement potential (AP) are presented in Table 4. The maximum 
AP estimated for UK sheep was of 2.7Mt, which is equivalent to 27% reduction in 
emissions. Sheep breeding strategies explain almost 30% of this reduction.

Another example is the integration of sheep genetics for reducing GHG emissions in 
the context of a Regenerative Livestock Farming programme in Uruguay. Research 
and development for this initiative have been supported by national and international 
funding. As the industry captured the demands of high-value markets for high intrinsic 
quality wool produced in regenerative livestock farming systems, nowadays there are 19 
farms included in this initiative (Blumetto et al., 2023), and the approach is expanding 

Computer Tomography

Predictions from other 
phenotypes

Economics and 
abatement potential



312

Reduce greenhouse gas emissions from sheep

Proceedings ICAR Conference 2024, Bled

to other industries. Modelling work carried out based on Life Cycle Analysis indicates a 
potential abatement of emission intensity associated with wool products, ranging from 
6 to 20%, assuming the flock has a CH4 emission equivalent to the top 25% genetically 
superior (animals with lower emission) (Blumetto et al., 2023). 

In 2023, GEPDs for RFI and CH4 emission were made available for an Australian Merino 
breed in Uruguay as research breeding values, being a first step before incorporating 
routinely these traits into the breeding program. These estimates were based on 
1.200 lambs phenotyped for RFI and CH4 and 3000 genotyped animals.

In New Zealand, the cost of mitigating a tonne of CO2 equivalent through breeding for 
reduced methane in the national scheme was estimated at less than NZ$2. Empirical 
evidence showed that a 0.5-1% per year reduction is possible for a moderate economic 
weighting on carbon demonstrating that breeding has major potential as a national 
mitigation strategy (Rowe et al., 2021). The authors also demonstrated use of methane 
emissions in a selection index for a 750 ewe research flock where methane emissions 
were being reduced by greater than 1% per year whilst maintaining genetic gain in 
the production index.

Some viable proxy traits for predicting feed efficiency and methane emissions are 
emerging. Work continues to progress on rumen microbial profiling to predict methane 
emissions (Rowe et al. 2019; Hess et al. 2020), which has the potential to provide an 
accurate and relatively quick method to determine genetic merit for use in breeding 
programmes. Likewise, CT-measured rumen volumes are now being measured in 
greater numbers within research flocks and breeding programmes in various countries 
to relate to methane emissions at the genetic level. If this proxy trait proves to accurately 
predict methane at the genetic level, then a mechanism is already in place in some 
countries (e.g. UK, NZ, Ireland) to incorporate these alongside other CT traits in 
breeding programmes. However, direct measurement of methane emissions, using 
PAC technology, is emerging as the most promising route to large-scale measurement 
of emissions from sheep across different production systems. PACs are being used 
within research flocks (e.g. in Australia, NZ, Uruguay, Ireland, Norway), often with 
strong genetic links to national breeding programmes. In some cases (e.g. NZ, Ireland, 

4 

Table 4. Cost effectiveness (CE) and abatement potential (AP) of mitigation measures applied to UK sheep 
systems, with interactions. 
 

Name Applied to CE (£/tCO2e) AP (ktCO2e) AP as % 
Bio N fixation in 
grasslands Managed grass -1034 250 2.5% 
Optimising pH for 
grass growth Managed grass -31 278 2.8% 
Breeding for 
improved 
productivity All sheep -10 504 5.0% 
Breeding for lower 
CH4 All sheep 20 252 2.5% 
Better health 
planning for sheep All sheep 38 391 3.9% 
3NOP Non-grazing sheep 119 99 1.0% 
3NOP All sheep 158 925 9.2% 
Total   2699 27% 

 
 

Table 4. Cost effectiveness (CE) and abatement potential (AP) of mitigation measures applied 
to UK sheep systems, with interactions.

Discussion
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Norway, UK), PACs are being taken to breeders’ farms to measure methane from 
industry flocks participating in progeny testing or national breeding programmes. 
The GrassToGas team has produced standardised protocols for both PAC and feed 
efficiency measurements, which could help in collation of methane records from 
different countries via international collaborations. Measurement of more animals can 
help accelerate the contribution of sheep breeding to methane mitigation. 

The next steps are to develop environmental selection indices, including methane 
emissions, for breeding programmes, once sufficient data are available. Mitigation 
targets can be expressed as absolute methane emissions or “methane intensity” 
(methane per kg product). Improving productivity and reducing production inefficiencies 
favourably impacts methane intensity, but may increase absolute emissions. However, 
direct genetic selection for low emitting animals reduces total methane emissions. 
One main project conclusion is that selection for lower methane emissions should be 
considered in the framework of a multi-trait selection index, allowing optimised genetic 
improvement across several important traits, even when some genetic associations 
are unfavourable. 

One of the most successful outcomes for the project is truly independent validation of 
methods and protocols to monitor complex phenotypes associated with environmental 
impact. The consortium will continue working together under the newly-funded Green-
Era-Hub ‘Sustain Sheep’ project, and hopefully into the future via the Global Methane 
Hub.

The Grass To Gas project was funded under the joint ERA-GAS, ERA-NET, ERA‑ICT 
2018 call via the participating countries’ respective Governments and funding agencies. 
Aspects of this work was funded by the European Union’s H2020 research and 
Innovation programme under the grant agreement no. 772787 (SMARTER). 
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Meat, dairy and wool industries are particularly important in Latin American (LA) 
countries given their significant contributions to national economies, generation of 
employment and rural development. Livestock industries are also relevant for ensuring 
food security in the region, and for the rest of the world attending the predicted increase 
in food demand of a growing global population. The LA region is responsible for 25% 
and 11% of the world beef and dairy production, respectively, with Argentina, Brazil, 
Mexico and Uruguay being among the major beef and dairy producing and exporting 
nations. Reducing enteric methane emissions (EME) is one of the challenges that 
the livestock industry faces in Latin America. Cattle and sheep are major sources of 
greenhouse gas (GHG) emissions in LA, particularly EME which represents from 11% 
(Mexico) to 42% (Uruguay) of the total GHG emissions in the considered countries. 
Animal breeding provides the opportunity to harmonise production growth and EME 
mitigations targets in the framework of the Paris Agreement and the Global Methane 
Pledge. The most important Bos taurus (Angus, Hereford, Holstein, Simmental, 
Charolais), Bos indicus (Nelore, Brahman and Guzerá) and composites (Brangus, 
Braford, Montana, Simbrah) breeds have genetic evaluation in place in Argentina, 
Brazil, Mexico and Uruguay, some of them established 30 years ago. Similarly, wool, 
dual purpose and meat sheep breeds are genetically evaluated in Argentina and 
Uruguay. Genetic evaluations systems include relevant traits related to production 
(reproduction, growth, carcass weight, milk production, fleece weight), and product 
quality (meat intramuscular fat, milk protein content, fibre diameter). Feed efficiency, 
assessed by residual feed intake (RFI), has been recently incorporated into beef cattle 
genetic evaluations in Argentina (Angus, Brangus, Braford), Brazil (Nellore, Guzera 
and Brahman) and Uruguay (Hereford). Genomic information has been integrated in 
many breeding programmes of cattle and sheep. This is particularly relevant for difficult 
to measure traits, such as RFI and EME, although expanding the reference population 
sizes for improving prediction accuracies remains a difficult task. EME phenotypes for 
breeding purposes are still scarce in the region. In 2021, Uruguay started recording 
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EME in Hereford, using GreenFeed units, during the RFI tests, and a similar approach 
will be implemented in Argentina in several breeds. An intensive phenotyping platform 
was developed in Uruguay for sheep, in which RFI and EME are measured. Based 
on data recorded with Portable Accumulation Chambers, the first genomic breeding 
values for EME have been published in Merino. The genetic evaluation system in these 
LA countries have been implemented based on associations between breed societies 
and academic institutions, including national research institutes and universities. These 
relevant and long-lasting collaborations between public and private sectors in Argentina, 
Brazil, Mexico, and Uruguay provide the basis for a coordinated regional programme 
for animal breeding strategies with the aim of mitigating EME and improving livestock 
performance. The critical step is implementing the phenotyping platform for EME for 
the main breeds. This implies improving EME recording in association with RFI and 
expanding it to grazing conditions. The first approach delivers key information to 
disentangle the links among feed intake, animal performance and EME. Data recorded 
in grazing animals allows investigating EME in the most relevant livestock production 
environment in the region, and potentially developing proxy measures for larger 
phenotyping carried out by breeders. Although feed intake, which is a main driver of 
EME, is a very difficult-to-measure trait, the information in the grazing system would 
provide valuable data for quantifying EME intensities and estimating EME factors. An 
integrated and collaborative approach among the mentioned countries would be able to 
provide breeding tools and information for breeders to contribute to current and future 
challenges, considering environmental, social, and economic sustainability. 

Keywords: genomic selection, sustainability, greenhouse gas, residual feed intake, 
cattle, sheep. 
Presented at the ICAR Anual Conference 2024 in Bled at the Session 8: Global 
challenges in genetic selection for lower methane emission in ruminants.

Latin America (LA) is one of the main providers of meat and fibres of the world, 
comprising 30% and 6% of cattle and sheep stock in the world. The region has the 
largest reserve of land with agricultural potential determined by 16% of the world’s 
agricultural land and 33% of its unused agricultural area. LA countries play a key role 
for food security not only in the region, but also for the rest of the world (OECD et al., 
2023). Reinforcing the path towards a more sustainable livestock production is relevant 
for the region to face current and future challenges, given that food consumption is 
expected to increase by 1.4% per year in the next decade due to the population growth. 
Estimates indicate that for the next decade a global growth of beef production of 8%, 
with LA accounting for 33% of this growth and reinforcing its position as world primer 
exporter of agricultural products such as beef (OECD‑FAO, 2022).

Most of the greenhouse gas (GHG) emissions in LA countries are from the agricultural 
sector accounting for 40% of total emissions (CO2 eq)(Cárdenas and Orozco, 2022). 
In particular, enteric methane emissions (EME) from ruminants explain between 6 and 
43%, proportion explained by combined effect of the relevance of the livestock sector 
and relative magnitude of other economic sectors, such as the energy sector (Tedeschi 
et al., 2022). These figures highlight the significant impact of reducing EME on total 
GHG emissions and, at the same time the importance of implementing EME mitigations 
strategies in the livestock industry.

Addressing EME strategies in LA must take into account the economic, social and 
environmental relevance of livestock production, and drastic alternatives, such as 
reducing national flocks and herds to decrease total EME would have significant 
unfavourable implications in all dimensions defining sustainability. LA is integrated by 
developing countries where livestock production is economically very relevant and a 
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key activity for rural development and source of employment globally in the livestock 
industry. Additionally, it is important to mention that livestock farming is also related to 
other characteristics associated with the environmental dimension of sustainability, as 
an important proportion of cattle and sheep are raised in grazing conditions, with an 
important proportion of natural grasslands (OECD‑FAO, 2022). Carbon sequestration 
by soil and biodiversity conservation (i.e. Duarte-Guardia et al., 2024) are examples 
of aspects related to GHG mitigation and environmental sustainability in the livestock 
production systems. 

Animal selection offers the opportunity to harmonise production growth and EME 
mitigations targets in the framework of the Paris Agreement and the Global Methane 
Pledge, subscribed by LA countries. This work focuses on four main beef and sheep 
producers and exporters countries in LA: Argentina, Brazil, Mexico and Uruguay. 
The genetic evaluations systems in place in these countries provide the basis for the 
assessment of the impact of animal breeding on EME and the integration of EME 
phenotyping. It will help investigate alternatives to accelerate genetic selection for 
lower EME while reconciling all sustainability dimensions. In this article we describe 
the contribution of these countries to the EME in the region and relevance as livestock 
producers, their current breeding programmes and how the integration of EME 
phenotyping can contribute to reduce EME and achieve mitigation targets. 

Cattle and sheep stock in Argentina, Brasil, Mexico and Uruguay represent more than 
75% and 65% of the total in LA for each species, respectively. Livestock production 
explains a proportion of the national gross domestic product (GDP) that varies between 
28 to 43% (Arango et al., 2020), being among the major beef producing and exporting 
nations.. In all cases, the agricultural sector (agriculture, forestry and other land use 
sector in the national GHG inventories, AFOLU) is responsible for significant proportion 
of total GHG emissions, and EME represents a high proportion of the AFOLU GHG 
emissions (Ruden et al., 2023).

Global national mitigations targets have been defined in all countries, in accordance 
with the Paris Agreement, in terms of emission intensity and total emissions. For 2025, 
total reductions in GHG intensities of 25% and 50% have been proposed by Mexico 
and Uruguay, respectively. For 2030 specific mitigation targets in absolute terms for 
each GHG have been defined in Uruguay, as well as a specific goal of lowering by 35% 
the EME intensity in the cattle sector. Argentina committed to a reduction of total GHG 
emissions of 27,7%, without a reduction in livestock stocks, this implies lowering EME 
intensities by increasing efficiency. México committed to an unconditional reduction 

Livestock 
production and 
GHG mitigation 
targets

 

 

 
Table 1. Livestock production and enteric methane emissions by country 
 
 Argentina Brazil Mexico Uruguay 
Economic characterization 1     
Cattle numbers (million heads) 53.9 214 33.5 11.3 
Area (million ha) 110 168 197 13.3 
Contribution to national GDP (%) 3 6.8 1.6 6 
Contribution to agricultural GDP (%) 38 30 43 28 
GHG emissions profile 2,3     
AFOLU contribution to total GHG (%) 45.0 48.5 19.0 75.4 
Contribution of EME to AFOLU (%) 33.3 45.6 78.3 57.5 
1Adapted from Arango et al. (2020); 
2Adapted from Ruden et al. (2023);  
3Adapted from MAyDS (2023) 
 
  

Table 1. Livestock production and enteric methane emissions by country.
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of 25% of its GHG and Short-Lived Climate Pollutant (SLCP) emissions by 2030. This 
commitment implies a 22% reduction of GHGs and a 51% reduction of Black Carbon. 

Cattle and sheep national genetics evaluations have been in place South America 
since late-80´s (Mueller et al., 2016; Navajas and Baldi, 2016; Ravagnolo et al., 2023) 
and established in Mexico in the early 2000s (Ríos Utrera et al., 2021).The genetic 
improvement programs in both species have been implemented through collaborative 
development among academic institutions and breed societies. The main cattle and 
sheep breeds are generically evaluated, and as described in Table 2. The most 
important Bos taurus, Bos indicus and synthetic Taurus x Indicus breeds are considered 
in the genetic evaluations systems, as well as the most important wool, dual purpose 
and meat sheep breeds. 

A comprehensive set of traits directly related to reproductive performance, growth and 
carcass and meat quality are considered overall in beef cattle in the different countries, 
as reported by Navajas and Baldi (2016). More detailed description of specific traits can 
be found at FAGB (2023) for Argentina, Pampaplus (2023) and Embrapa-Geneplus 
(2024) for Brazil, Ríos Utrera et al. (2021) for Mexico, and Ravagnolo et al. (2023) 
for Uruguay. Across countries and beef cattle breeds, there is a prevalence of growth 
traits such as birth weight, weaning weight, milk production and final weight (recorded 
at 15/18 months of age). 

A second group of traits considered in the genetic evaluation systems are indicator 
traits of carcass and meat quality composition, which are measured by ultrasound: eye 
muscle areas, subcutaneous fat depth and intramuscular fat. Regarding reproductive 
performance, scrotal circumference is the most common trait seen in the genetic 
evaluations, as well as mature cow weight and calving ease, although other specific 
reproductive traits are present in the genetic evaluations (gestation length, age at first 
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Main production 
traits in beef cattle 
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Table 2. Genetic evaluations: main beef cattle and sheep breeds by country 
 
Cattle and sheep breeds Argentina Brazil Mexico Uruguay 
Cattle     
Angus X X X X 
Hereford X X  X 
Limousin X  X X 
Brahman X X X  
Nellore  X   
Simmental   X  
Simbrah   X  
Charolais   X  
Brangus X X X  
Braford X  X X 
Sheep     
Australian Merino X   X 
Dohne Merino X   X 
Corriedale X   X 
Texel X   X 
  

Table 2. Genetic evaluations: main beef cattle and sheep breeds by country..
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calving, etc). A similar situation is observed at sheep genetic evaluations in which wool 
production and quality are very relevant, in addition to growth and reproductive traits 
(Álvarez et al., 2014; Ravagnolo et al.,2023).

Feed efficiency is a new trait included in the genetic evaluation of beef cattle. Residual 
feed intake (RFI), defined as the difference between actual and predicted feed 
intake (Koch et al., 1963), implies reducing feed intake without compromising animal 
performance. Consequently, improving feed efficiency by selecting for RFI is an 
appealing new breeding objective because it leads to improved net income by reducing 
feed costs without affecting economic income. At a production system or national level, 
improving RFI could also be interpreted as a contribution to optimise the use of limiting 
resources, such as land in pasture-based production systems (Navajas et al., 2022). 

Feed efficiency tests to assess RFI are performed in the four countries. In Argentina, 
INTA has five RFI phenotyping stations placed in the most relevant livestock production 
areas and other private facilities are recording RFI (Pordomingo, 2022). A public-private 
partnership between INTA, the University of Buenos Aires, Breeders Associations and 
private organisations is responsible for the evaluation of bulls of many breeds, such 
as Angus, Brangus, Braford and Hereford. Because RFI recording recently started 
the number of evaluated animals is still limited, but rapidly increasing and the EBVs 
are being published by the breeder societies. Argentina also started to register RFI in 
Merino and Dohne Merino at INTA Chubut Experimental Station and another facility 
is planned in southern Patagonia, which will also include Corriedale. 

Several initiatives are in place in Brazil for measuring RFI in Bos taurus and Bos 
indicus and composites. For example, Embrapa Beef Cattle Unit has had a continuous 
private-public partnership with the company Geneplus Consulting Ltd, giving rise to the 
Embrapa Geneplus Program that involves 10 beef cattle breeds. In Nellore, since 2021, 
EPDs for RFI have been released for all breeders. Vast research has been carried out 
in the Canchim breed by Embrapa Southeast Livestock, where RFI measurements 
take place in this breed. a. Furthermore, in the Embrapa Southern Livestock Unit, the 
beef cattle breeding and research team has collected RFI data in Angus, Brangus, 
Hereford, Bradford and Charolais breeds, an initiative implemented in partnership with 
the breeders associations.

Similarly, initial tests for RFI have been conducted in Mexico since 2019 in collaboration 
with the Mexican Simmental and Simbrah Cattle Association, using the GrowSafe 
system. In Uruguay, RFI is in the Hereford genetic evaluation based on the information 
recorded in the post-weaning feed efficiency tests of Hereford bulls and steers, carried 
out at the e Central de Prueba Kiyú of the Hereford Breeders Society of Uruguay 
(Pravia et al., 2022). More recently, RFI at finishing (feedlot) is also evaluated in 
steers immediately after the post-weaning test, although this trait is not included in 
the genetic evaluation (Navajas et al., 2022). In the case of sheep, Australian Merino 
has the first estimations of genetic merit for RFI, although RFI information is being 
collected at INIA Experimental Station La Magnolia where lambs of the main wool, 
dual purpose and meat sheep breeds of Uruguay have been measured post-weaning 
since 2018: Australian Merino, Corriedale, Dohne Merino, Merilin and Texel lambs. 
Animals evaluated here belong to Selection Nucleus (Australian Merino), Information 
Nucleus (Corriedale, Dohne Merino, Texel) and commercial stud-flocks (all breeds) 
and are strongly connected with populations in the genetic evaluation (performance 
recorded) (Navajas et al., 2022).

Inclusion of feed 
efficiency 
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In the last decade, several of the cattle breeding programs have implemented genomic 
selection. This represents an important step for accelerating genetic progress by 
enhancing prediction accuracies at an earlier age. Additionally, it facilitates the inclusion 
of hard-to-measure traits, such as feed efficiency and EME, which can be improved 
more effectively.

Brangus and Braford breeds in Argentina have recently implemented genomic 
evaluations in collaboration with the Animal Breeding Group of the University of 
Buenos Aires, based on the methodology by Cantet et al. (2022). Argentinian Angus 
also implemented the genomic evaluation a few years ago, which was carried out by 
INTA (Instituto Nacional de Tecnología Agropecuaria) (Curutchet et al., 2023). In the 
case of the Hereford breed in Argentina, as well as in Uruguay, genomic evaluation 
was available in the context of the Pan-American Hereford Evaluation that included 
genotypes of all countries in the reference population (Navajas and Baldi, 2016).

Embrapa has implemented genomic evaluations in several breeds in partnership with 
different organisations. For example, in association with ABCZ (Brazilian Zebu Breeders 
Association), Embrapa Geneplus Program is responsible for the biggest Nellore 
genomic evaluation in the world (13 million animals, 306k genotypes). In the south, 
Embrapa Southern Livestock in collaboration with three animal genetic improvement 
programs (Pampaplus, Promebo and Brangus+) has contributed to the implementation 
of genomic selection in Angus, Hereford, Braford and Brangus.

In Mexico, genomic data has been included in genetic evaluation in Simmental and 
Simbrah breeds. In 2016 the first genomic evaluation was made, with the support of 
genetic improvement researchers from the National Institute of Forestry, Agriculture 
and Livestock Research (INIFAP), establishing a strategic alliance to develop the 
procedure for estimating direct genomic values in the Mexican Simmental and Simbrah 
cattle population. There is a reference population of 1,250 Simmental and Simbrah 
animals, selected on the basis of their marginal genetic contribution in the population 
and with EPDs for all traits included in the Genetic Evaluation, in particular for growth 
traits, frame score, scrotal circumference and stayability. On the other hand, activities 
have been carried out to integrate reference populations for feed efficiency and carcass 
characteristics measured by ultrasound. Once the appropriate number of animals with 
phenotypic information is available, genotypic characterisation will proceed with a high 
density microarray and the development of equations to predict genomic values for 
RFI, marbling, and ribeye area.

Genomic data has been included in the genetic evaluations in Angus and Hereford 
breeds in Uruguay that lead to the publication of genomic breeding values since 2016 
and 2021, respectively (Ravagnolo et al., 2023). In the case of RFI, an initial binational 
reference population comprising 731 Uruguayan and 1168 Canadian Hereford bulls and 
steers was the basis for estimating genomic expected progeny differences (GEPD), 
which have been published since 2017. The assessment of prediction ability using 
two validation strategies concluded that it is possible to predict accurate and unbiased 
RFI GEPDs for non phenotyped selection candidates based on genomic prediction 
(Pravia et al., 2023).

Several studies confirm that EME is a heritable trait (cattle, range 0.10-0.45, Dressler 
et al. 2024); sheep, range 0.17-0.34, Jakobsen et al., 2022, Marques et al., 2022), 
confirming that selective breeding can support the reduction of EME. To make this 
possible, phenotyping EME is required in a large number of animals to be able to 
obtain accurate estimations of genetic correlations between EME and production traits. 
Having in mind that EME is a difficult-to-measure trait, genomic selection will have an 

Implementation of 
genomic selection

Incorporation 
of methane 
emissions 
in genetic 
evaluations



323

ICAR Technical Series no. 28

Navajas et al.

important impact and a large reference population needs to be built. Recording EME is 
the first main challenge for implementing genetic selection for lowering EME. Although 
different methods to measure are available, all have advantages and limitations in 
terms of accuracy, ease of use and setting in which they can be used (Tedeschi et 
al., 2022). In LA, several of these methods are being used with a variety of purposes.

Respiration chambers are the gold standard method, and four units are available at 
INTA in Balcarce and Leales Experimental Stations (Argentina) and four at Embrapa 
Dairy Cattle (Brazil). Expertise regarding the use of SF6 is available in the region and 
the method has been used extensively for the evaluation of other mitigation interventions 
such as forage quality, finishing systems (grazing vs feedlot) and different pasture-
based systems (Loza et al., 2024). However, for measuring EME in association with 
feed efficiency tests and expanding it for grazing conditions and massive data recording, 
GreenFeed and Sniffers are the preferred options for cattle and Portable Accumulation 
Chambers (PAC) for sheep.

The first EME measurements using GreenFeed units in South America were at Embrapa 
Southeast Livestock. In 2014 and 2015, animals from different lineages of the Canchim 
breed were monitored for EME, both on pasture and in confinement, as well as in relation 
to feed efficiency in confinement (Méo-Filho et al., 2020). In Uruguay, EMEs started 
being recorded during the post-weaning RFI tests in Hereford using GreenFeed units, 
as well as during the finishing RFI evaluations. Similarly, new GreenFeed units have 
been installed in feed efficiency facilities at INTA for the evaluation of Angus, Hereford, 
Braford and Brangus located in several INTA experimental stations in different regions 
in the country (Anguil, Rafaela, Mercedes, Valle Inferior, Cesáreo Naredo).

The EMEs in Mexico have been measured using Sniffers, which operate based on the 
methodology developed by Garnsworthy et al. (2012), involving continuous analysis 
of gas concentrations using an infrared methane analyzer. This system utilises the 
Guardian NG - Infrared Gas Monitor to retrieve concentration data of gases second by 
second in the ambient environment. Before implementation, the equipment underwent 
calibration using methane gas at known concentrations, and were then installed 
in modified feeders to establish a closed environment, thereby mitigating external 
influences on measurements.

Incorporating EME measures to the feed efficiency test in both cattle and sheep provide 
very valuable information, particularly considering that animals recorded are part or 
linked to the populations in the genetic evaluations. In addition to the possibility of 
estimating genetic parameters for EME, the combination of feed intake and animal 
performance data allows to disentangle the associations between them and EME. 
This is very relevant for understanding the impact of genetic selection on the three 
EME metrics: 

1.	 absolute EME measured in the animal, 

2.	 EME intensity express emissions relative to livestock production (g/kg meat, milk 
or wool produced), and 

3.	 EME yield, which is the ratio between absolute emissions and the feed intake 
expressed as dry matter intake (g/kgDMI) (Beauchemin et al., 2022). 

Additionally, quantifying the role and impact of RFI as indirect selection criteria for 
reduced EME would be possible in different breeds.

Methane emission 
and feed efficiency
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EME in grazing conditions is a particularly important and challenging step that needs 
to be considered, given the relevance of pasture-based livestock farming in the 
region. In this context the use of GreenFeed units provides a feasible alternative for 
EME recording. Focusing these measurements on animals also linked to the genetic 
evaluations will be beneficial. Given the limited experience and the technical demands 
of continuous use of the equipment a first step would be to implement EME recording 
in experimental stations, before designing the expansion to commercial settings such 
as breeder and stud farms.

In Uruguay, two Hereford herds (INIA Glencoe and INIA Las Brujas) and the Central 
de Prueba Kiyú where feed efficiency and EME are measured in bulls and steers 
constitute the Hereford information nucleus. Sires selected by genetic merit for feed 
efficiency are used in both herds, which also provide steers for the feed efficiency 
test at finishing that are evaluated for carcass and meat quality traits. Growth and 
reproductive performance in grazing conditions are recorded in the herds. Therefore, 
the inclusion of EME recording in the herds will complement the information measured 
at the feed efficiency tests. 

Beyond the expected significant impact of genetic selection on EME mitigation, it is 
a slow process. This emphasises the need of implementing not only phenotyping 
platforms for EME recording associated with genetic evaluations to accelerate genetic 
progress but also addressing other challenges to promote the adoption of genetic tools 
by breeders and encourage finance support by policy makers and funding bodies. 
Examples of these challenges include quantification of impact of genetic selection at 
farm and regional levels, developing linkages with GHG inventories to be able to report 
mitigation impact by animal breeding, reinforcing knowledge transfer programs and 
promoting breeders’ engagement in this process and implementing direct or indirect 
economic incentives for farmers to select for this trait.

Genetic evaluations systems of the four countries considered here are carried out 
by or with the support of their national research institutes and universities, in strong 
partnership with the private sector. Additionally, national research institutes have 
direct links with national government agencies and regional forums and initiatives. 
This provides a valuable opportunity for the development of effective communication 
strategies with key stakeholders of the private and public sectors. 

The LA region has genetic evaluations systems in place in the main livestock producers 
and exporters countries, with the capabilities to incorporate EME platforms that would 
enable accelerating genetic progress to reduce EME and achieve the GHG mitigation 
targets. An integrated and collaborative approach among Argentina, Brazil, Mexico 
and Uruguay will facilitate providing breeders and farmers with genetic tools for current 
and future challenges, considering environmental, social, and economic sustainability. 
In direct connection with policy makers and regional forums, effective communication 
strategies could be implemented to position animal breeding as a major contributor to 
improve livestock productivity and reduce EME in the region. 
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The mammary gland is a highly regenerative organ that undergoes most of its 
development after birth (Inman et al. 2015). The cyclical phases of growth, differentiation, 
lactation and involution of the mammary gland are regulated by hormones and growth 
factors (Neville et al. 2002). A consequence of the complex function of the mammary 
gland and intense secretion of milk, which differs significantly among different species, 
is also the presence of somatic cells in milk. The main fractions of somatic cells in 
milk are epithelial cells, lymphocytes, polymorphonuclear neutrophils (PMN), and 
macrophages. The majority of exfoliated epithelial cells present in milk are viable and 
exhibit characteristics of fully differentiated alveolar cells (Boutinaud and Jammes 
2002). The somatic cell count (SCC) in milk, widely used as a marker for udder health, 
only provides the cumulative number of somatic cells in milk, whereas the differential 
somatic cell count (DSCC) allows differentiation between two groups of cells: PMN 
and lymphocytes versus macrophages (Wall et al. 2018) and represents therefore a 
significant step forward in understanding the dynamics of the somatic cell population in 
the mammary gland during lactation and at infection. In cattle and sheep, the epithelial 
cell fraction represents only a relatively small part of somatic cells in milk, whereas, in 
porcine and goat milk, as well as in human milk, epithelial cells are the predominant 
cell type in milk (Boutinaud and Jammes 2002). In different organs, adult stem cells 
are present with their primary role of maintaining tissue homeostasis (Biteau et al. 
2011). However, stem cells in the adult mammary gland serve both, development 
and homeostasis. Mammary stem cells (MaSCs) can self-renew and differentiate into 
different cell types during the mammary gland’s developing cycles (Visvader and Stingl 
2014). In 2006, mouse MaSCs were identified and isolated for the first time (Shackleton 
et al. 2006). Since then, plenty of strategies have been used to identify and characterize 
MaSC and to delineate the mammary epithelial hierarchy (Inman et al. 2015). 

Considerable efforts have been made to find a noninvasive way to obtain biological 
material for molecular analyses of mammary gland cells. The comparison of five 
different sources of RNA (biopsies of the mammary gland tissue, laser microdissected 
mammary epithelial cells, milk somatic cells, milk fat globules and antibody-captured 
milk mammary epithelial cells) for analysis of the bovine mammary gland transcriptome, 
showed that isolation of a total RNA directly from somatic cells released into milk 
during lactation, is an effective alternative to mammary gland tissue biopsies and laser 
microdissection of mammary tissue (Canovas et al. 2014). 

The organ-specific gene expression studies in the mammary gland were performed 
using expression microarrays a decade ago (Maningat et al. 2009) and allowed a 
comparative approach between species but were limited with the selection of genes 
on the chip. The next important step represented bulk RNA sequencing from mammary 
gland isolates (Medrano 2010). Sequencing of bulk RNA isolated from milk cells in 
three different lactation stages in Holstein cows revealed expression of more than 
19,000 genes as a cumulative number of genes expressed in different cell types 
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present in cow’s milk. Regardless of the lactation stage, approximately 9,000 genes 
showed ubiquitous expression, however, genes encoding lactoproteins and enzymes 
in the lactose synthesis pathway showed higher expression in early lactation and the 
majority of genes in the fat metabolism pathway had high expression in transition and 
peak lactation (Wickramasinghe et al. 2012). Several recent studies examined the 
distinct gene expression profiles of different mammary epithelial cell lineages at the 
single-cell level in human and mice (Cristea and Polyak 2018). In mouse, the analysis 
revealed 11 luminal and four basal clusters (Bach et al. 2017). The main advantage of 
single-cell RNA sequencing over the bulk mammary RNA sequencing is that single-cell 
RNA sequencing provides a reliable information about gene expression differences 
among different cell types and allows reliable assignment of transcripts to different 
cell types. The single-cell RNA sequencing opens a new horizon for documentation of 
cell type specific expression profiles in the mammary gland and even the possibility to 
determine different cell types based on cell type specific transcriptomic profile (Nguyen 
et al. 2018). In four studies a complete murine (Han et al. 2018; Schaum et al. 2018) 
and bovine (Becker et al. 2021; Zorc et al. 2024) mammary gland cell population was 
sequenced at the single-cell level, revealing a number of distinct cell types which 
exceeds the initially expected number. This approach also allows the identification of 
cellular sources for several milk components, which did not have defined origin before 
(Dallas et al. 2015). 

The amount of data in a typical single-cell sequencing experiment is much larger than 
in bulk RNA sequencing experiments. The increased amount of data represents a 
computational challenge and an opportunity to apply advanced approaches such as 
machine learning. Machine learning concepts are applied in computational pipelines 
for scRNA-seq data analyses (Hwang et al. 2018). From a mathematical point of 
view, identification of cell-populations in scRNA-Seq data is unsupervised clustering, 
a problem widely studied in the field of machine learning (Andrews and Hemberg 
2018). Dimension reduction is needed before clustering because scRNA-Seq data 
is high‑dimensional (~104 dimensions for mammalian samples) and suffers from the 
curse of dimensionality (Wagner et al. 2016). Methods used for dimension reduction 
are either Principal Component Analysis (PCA), t-distributed Stochastic Neighbour 
Embedding (tSNE) or diffusion maps (DM). 

Here we report the application of scRNA-seq to elucidate the cell type repertoire in 
bovine milk based on the transcriptomic differences among different cell clusters. Milk 
contains mammary epithelial cells and immune system cells (lymphocyte, macrophage, 
neutrophils), which reflect the activity of the mammary gland and illustrate the response 
of the mammary gland to environmental challenges. 

Milk samples were collected from two healthy Holstein cows (less than 50.000 SSC) in 
mid lactation. The cells were pelleted and washed in cold PBS. Single-cell library was 
generated using 10X Genomics technology and Chromium Single Cell 3’ Reagent Kit. 
Library samples were diluted to a concentration of 10 nM and loaded onto NovaSeq 
6000 (Illumina) instrument. Sample demultiplexing, barcode processing, read alignment 
to the bovine reference genome (ARS-UCD1.2.108), quantification and initial quality 
control of the paired-end sequencing data were performed for each sample using Cell 
Ranger software (version 7.1.0, 10X Genomics). Genes expressed in less than three 
cells were removed from the gene expression matrix. 

We applied “anchor-based” Seurat’s workflow (Stuart et al. 2018) to integrate two 
datasets. After filtering, we log-normalized the raw counts with LogNormalize and 
identified highly variable genes with FindVariableFeatures for each batch at default 
settings. We then ran FindIntegrationAnchors with dims = 1:30. The resulting anchors 
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were used for IntegrateData with the 30 dimensions. The most variable genes based on 
their expression in the entire population were determined using the FindVariableGenes 
function with default parameters (selection.method = ”vst”, nfeatures = 2000). Clusters 
were identified using the FindClusters function with a resolution of 0.8 and then 
visualized using the RunTSN and RunUMAP functions (reduction = “pca”). For fully 
automated cell-type identification we used ScType with ScType’s marker database 
(https://www.nature.com/articles/s41467-022-28803-w). 

A total of ~361M reads were obtained with 36,315 mean reads per cell for the first cow 
and ~257M reads with 17,459 mean reads per cell for the second. The efficiency of 
read mapping was between 94.1 and 96.6%. In total, 15,630 and 16,497 genes were 
identified. We performed an anchor-based integration analysis to explore all cells in 
both samples simultaneously. After UMAP reduction, a clear cell clustering highlighting 
22 distinct cell populations was obtained (Figure 1). 

The identified clusters can be grouped into two larger categories, including immune and 
epithelial cells. We identified classical and intermediate monocytes, naïve, effector and 
memory CD8+ T cells, naïve and effector CD4+ T cells, ISG expression immune cells, 
neutrophils, macrophages, mast cells, platelets, neutrophils, naïve B cells, progenitor 
cells, dendritic cells, luminal, ductal and alveolar cells. Identification of milk producing 
cells was based on expression of casein (CSN1S1, CSN1S2, CSN2, CSN3) and 
whey protein (PAEP, LALBA) genes. The cell cluster with significantly higher levels of 
caseins and whey proteins was annotated as alveolar cell cluster. The expression of 
casein (CSN1S1, CSN1S2, CSN2, CSN3), whey protein (PAEP, LALBA), MUC15 and 
BTNA1 genes allows identification of cell-type specific profiles indicating differences 
among bovine somatic milk cell clusters.

Results

Figure 1. Cell type clusters in bovine milk somatic cells. Cluster 20 (alveolar cells) represents 
a typical milk producing cluster.  
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Traditionally, somatic cells in the milk are expected to belong to myo/epithelial mammary 
gland cells, different types of immune cells (lymphocytes, neutrophils, macrophages) 
and stromal cells (Wickramasinghe et al. 2011). However, since precise markers for 
sub differentiation of cell types in the mammary gland are not present in all mammalian 
species (agricultural species are there not very well covered), the number of different 
cell types in the somatic cell fraction was normally underestimated. The analysis of bulk 
RNA transcripts from milk somatic cells revealed a very wide range of expressed genes 
and consequently indicated a wider range of cell-types in the milk somatic cell fraction. 
Single-cell sequencing of human and mouse mammary somatic cells revealed a much 
wider range of cell types, which are present in the milk (Nguyen et al. 2018; Schaum 
et al. 2018). Our single-cell RNA sequencing analysis of bovine milk has unveiled a 
cellular landscape of bovine milk somatic cells, highlighting a rich diversity of cell types 
pivotal for lactation, immune response and tissue homeostasis. Similar to the findings 
of Becker et al. (2021) (Becker et al. 2021), our study confirms the mammary gland’s 
complexity, revealing a broad array of immune and epithelial cells. 

A recent analysis of single-cell transcriptomes in mice has revealed important differences 
in gene expression between different cell types, which can significantly vary during the 
development of the mammary gland as well as in the course of lactation (Giraddi et 
al. 2018). The identification of a considerably higher number of cell-types in the milk 
somatic cell fraction compared to the traditional expectation opens a new horizon for 
more complex interpretation of the biological processes in the mammary gland.
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The National Genotyping Programme (NGP), a collaborative initiative between ICBF, 
the Department of Agriculture, Food and the Marine (DAFM), industry stakeholders and 
participating farmers, is the first step in achieving a fully genotyped national bovine herd 
in Ireland. The NGP operates under a co-funded model, sharing the cost across Irish 
Government, Industry Stakeholders and direct farmer contributions from the more than 
10,000 participating herds. Phase one of NGP saw over 780,000 animals genotyped 
in 2023, including each participant’s mature breeding herd. This was achieved, at 
no cost to the farmer, using Irish Government funding. Phase two, which began in 
January 2024, sees participating herds submit genotype samples at birth for all calves 
born in the herd, through the DNA Calf Registration Process, for the remainder of the 
programme (2024 to 2027 incl.). The cost of genotyping each calf in the programme is 
shared equally, 3 ways, between the farmer, DAFM and Industry, with each contributing 
approximately €6/calf. Since January 2024, over 660,000  registrations have been 
processed, with an average lab turnaround of 4.5 days, calves fully registered by an 
average of 12 days old, and with over 98,000 samples processed in a single week 
during the spring peak.

Keywords: National Genotyping Programme, Genotyping, Genomics, Calf 
Registration, Parentage.  
Presented at the ICAR Anual Conference 2024 in Bled at the Session 9: Genomic’s 
impact on Livestock Sustainability  

Agriculture is the Republic of Ireland’s single largest source of emissions, representing 
34.3% of total national GHG emissions. 62.5% of agricultural emissions in Ireland 
are due to enteric fermentation. Manure management constitutes a further 11% of 
the agricultural emissions profile, meaning that combined, livestock are responsible 
for approx. 74% of emissions in the sector. The Irish government has committed to 
achieving climate neutrality across all sectors no later than 2050 with a 51% reduction 
in GHG emissions targeted by 2030 (Government of Ireland, 2023). 

Genetic gain, particularly in this context of lowering Ireland’s agricultural Green 
House Gas (GHG) emissions, is a key strategic goal of both industry and government 
(Department of Agriculture, Food and the Marine, 2020). Animal breeding, improved 
animal health and reduced age at slaughter all directly and indirectly reduce GHG 
emissions, while proving cost negative, which equals a significant “win win” in terms 
of GHG mitigation measures (Teagasc, 2023). 

Genotyping the entire national bovine herd will underpin and accelerate the rate of 
genetic gain by leveraging genomic information and technologies against the existing 
integrated national database in ICBF to increase the accuracy of Ireland’s national 
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breeding indexes (EBI, Beef-Eurostar, DBI) and provide further tools to improve the 
national breeding programme. The advancement in the scale and accuracy of genomic 
selection, alongside numerous auxiliary benefits, such as enhanced traceability of beef 
and dairy products, labour saving, reduced administration, prevention of cattle theft etc, 
provided by NGP, offers Irish agriculture a profound opportunity which is estimated to 
provide up to a 4:1 return on investment (Abacus bio, 2022).

As of the mid 2023, ICBF, Ireland’s integrated national cattle breeding database, had 
collected over 3 million genotypes. Large scale genotyping had already been achieved 
in the Irish suckler herd through government schemes such as the Beef Data and 
Genomics Programme (BDGP), and the Suckler Carbon Efficiency Programme (SCEP).

Up to 400,000 genotypes have been submitted each year as part of these programs 
since 2015 leading to approximately 60% of the national suckler herd being genotyped 
by 2023.

Lacking equivalent external investment, the dairy herd has lagged behind in terms of 
genotyping, with only approximately 6.5% of the national herd genotyped by same 
juncture.

Proof of concept trials were carried out from spring 2018 to spring 2023 on the 
process of DNA calf registration, a system designed to integrate the genotyping and 
parentage verification process into the national calf registration system. The system 
consists of a genotype sample being submitted for each calf being registered, prior to 
the full registration of the calf on the national bovine traceability database, identifying 
and correcting errors in the recorded parentage, sex and breed of these calves in the 
process.

This system has the two major advantages of (i) reducing the administrative burden 
of subsequently correcting parentage errors, and (ii) allowing the calf to receive a full 
genomic evaluation at the earliest possible opportunity.

Over this period the scale of the pilots increased from an initial 18 herds to almost 600, 
with the number of calves genotyped in each pilot increasing accordingly from just over 
1,500 calves in 2018, to almost 50,000 in 2023.

The process was also, refined and improved over the course of these trials, with 
infrastructure developed which would be fundamental to the future scalability of the 
system. 

Data integration was improved between ICBF and both the Department of Agriculture, 
Food and the Marine (DAFM), and the farm software providers authorized to submit 
calf registrations. The turnaround time to process samples was reduced, and a new 
double tissue national calf tag was developed by tag suppliers capable of taking both 
a BVD sample and a DNA sample from a single set of national calf tags.

Following on from the success of the DNA Calf Registration pilots, The National 
Genotyping Programme (NGP) was launched in June of 2023. A collaborative initiative, 
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between ICBF, DAFM, beef and dairy industry stakeholders and participating farmers, 
the NGP is the first major step in achieving a fully genotyped national bovine herd in 
Ireland. The NGP operates under a co-funded model, sharing the cost across Irish 
Government, Dairy Industry Ireland (D.I.I.), Meat Industry Ireland (M.I.I.) and direct 
farmer contributions. The NGP consists of two main phases.

Phase one of the NGP began in June of 2023 with a drive to recruit herds which 
lead to over 10,600 herds signing up to participate, including ~3,800 dairy herds and 
~6,800 beef herds, accounting for almost 700,000 cows in total. The first phase also 
saw over 780,000 animals genotyped in 2023, including each participant’s mature 
cow herd, breeding heifer replacements and expected calf sires which had not already 
been genotyped. This was achieved, at no cost to the farmer, using Irish Government 
funding. This This influx of genotypes brought the total number of genotypes in the 
ICBF database over 4 million and led to the largest single publication of new genomic 
evaluations to date, with some 620,000 females receiving genomic evaluations for the 
first time in January evaluation run of 2024.

The second phase, which began in January 2024, has seen participating herds 
submit genotype samples at birth for all calves born in the herd through the DNA calf 
registration process, which will continue for the remainder of the programme (2024 
to 2027 incl.). The cost of genotyping each calf in the programme is shared equally, 
3 ways, between the farmer, DAFM and industry, with each contributing approximately 
€6/calf. Continued process improvements, along with meticulous planning and 
coordination among the various stakeholders, has allowed the process to admirably 
handle the over 660,000registrations since January 2024, which equates to a third 
of all the calves registered in Ireland in the same period. This was achieved while 
processing samples in an average lab turnaround of 4.5 days, fully registering calves 
by an average of 12 days old, and with over 98,000 samples processed in a single 
week during the spring peak. 

Since this phase of the programme began in January 2024, across all herd types, 
parentage errors have been identified in an average of 16.49% of cases. Errors in the 
recorded sex were identified and corrected in 1.69% of cases. In the 9.65% of calves 
submitted for registration without sire details, a sire was identified by the genotype 
and added in 81.26% of cases. 

This level of large scale genotyping is achieved on the ICBF custom International 
Dairy and Beef SNP Chip (V5), a ThermoFisher Applied Biosystems™ Axiom™ 
Genotyping array, combined with the ThermoFisher Axiom Propel Express 384HT 
Workflow. In order to accommodate the volume of genotypes included in weekly 
genomic evaluations,  significant changes were made to the imputation pipeline by 
limiting imputations to only new genotype samples or those belonging to animals that 
had parentage changes since the last imputation, and by adding an additional 4 new 
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High Performance Computing Nodes, each with 64 cores and an additional 3TB of 
RAM, which drastically reduced the run time of the imputation process and allowed 
for more evaluations to be run concurrently.

Large scale genotyping and the DNA calf registration process offer many technical 
and logistical challenges. The operational aspects of the programme are multifaceted, 
involving the collection, processing, and analysis of huge amounts of genetic data and 
the seamless integration and flow of data across multiple databases and stakeholders. 
Practical innovations were also required at farm level such as the development 
of calf identification tags capable of taking multiple different tissue samples, while 
still conforming to all the existing statutory requirements around identification and 
traceability. With such a complex and interconnected project, absolute commitment and 
cooperation is required from all stakeholders involved including; farmers, government, 
industry, genotyping labs, tag suppliers, farm software providers, Animal Health Ireland 
and farm advisory bodies such as Teagasc, to ensure success at such scale and within 
such time sensitive timelines. 

Abacusbio, 2022, (Unpublished) Economic Benefits of Genotyping Every 
Calf.

Government of Ireland, 2023. Climate Action Plan 2024: p 11 & 305. 

Department of Agriculture Food and the Marine, 2020. Ag Climatise: A 
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Table 1. Number of participating herds in DNA calf registration pilots and 
the corresponding number of calves genotyped at birth. 

 
Table 1. Number of Participating herds in DNA calf registration pilots and the corresponding number of 
calves genotyped at birth.  
 
 DNA Calf Registration Pilots 

Pilot year 
Number of participating 

herds 
Number of calves 
genotyped at birth 

2018 18 1,537 
2019 35 1,652 
2020 269 21,141 
2021 401 33,404 
2022 560 40,201 
2023 594 43,676 
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The objective of this paper is to draw the benefit and obstacles of using genomic data 
in sheep breeding through two contrasting situations: Croatia and France. Istrian (IS) 
and Pag (PS) sheep are Croatian native breeds undergoing selection on dairy traits 
(milk, fat, and protein) based on traditional pedigree BLUP. Genetic improvement of 
dairy performance via selection is important for their long term productive and economic 
viability, while maintaining the existing genetic variability is vital for their resilience in 
unpredictable future environment. Different SNP arrays have been used in many novel 
breeding programmes for the purpose of selection and conservation, and inclusion of 
genomic information in existing genetic evaluation of IS and PS seems to be promising 
and beneficial from both, the selection and conservation perspectives. The intention 
of the stakeholders involved in genetic evaluation of these breeds is to implement the 
basic principles of genomic optimum contribution selection (OCS) in existing breeding 
program in order to provide selection progress on targeted trait/s with minimal loss of 
genetic variability (ultimate goal of the OPTI-SHEEP project, CSF, IP: 2019-04-3559). 
So far, almost the whole breeding population of IS and PS (altogether ~4,000 animals) 
was genotyped using the Illumina OvineSNP50K BeadChip®. Transition from pedigree 
based BLUP to single-step GBLUP and development of pipelines for routine genomic 
OCS are still in progress. However, prior to major financial investments in genotyping 
and picking up the best strategy for long-term OCS, many practical and scientific 
questions need to be answered. Since the benefits of genomic selection heavily 
depend on population specific genetic parameters such as linkage disequilibrium, 
genetic connectedness between flocks, heritability of the traits, effective population 
size, etc., their estimation highlighted the potential benefits of genomic selection 
and some weaknesses that need to be worked on to maximize the benefits from this 
promising strategy. All these efforts will definitely impact long-term sustainability of 
Croatian sheep breeds which will benefit the breeders, consumers and corresponding 
(dairy) industries. By showing how to optimize selection with maintenance of genetic 
diversity, the results could also be beneficial to other sheep and livestock breeding 
programs. In France, all dairy sheep breeds have switched to genomic selection, with 
large reference population of rams for artificial insemination (Corse breed, n=0.4 K; 
Red – Faced Manech, n=3.5 K, Black – Faced Manech, n=0.7 K; Basco – Béarnaise, 
n= 1.2 K Lacaune breed, n= 7.4 K). 

Each year, more than 8,000 new animals are genotyped with more and more affordable 
medium density SNP arrays (including all candidate rams and also some females in 
flocks with no AI nor control mating). In addition to single-step genomic evaluation, 
SNP markers are used for prediction of monogenic traits such as resistance to scrapie, 
and for parentage verification and discovery. The extra genetic gain achieved through 
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the genomic program has already permitted to include novel traits, such as resistance 
to parasites, and will hopefully enable the inclusion of novel efficiency and resilience 
traits in the near future. As the French sheep populations are large, it is not feasible to 
genotype the whole female population, unlike the Croatian situation. In this respect, 
and through the comparison between those populations (large vs small populations, 
ancient vs recent breeding programs), we highlight similarities and differences in terms 
of opportunities and obstacles in the use of genomic data. 

We also assess how an initiative to establish an EU Reference Centre (EURC) for 
performance testing and genetic evaluation in small ruminants could offer opportunities 
to better valorise genomic data, including across country evaluation, in more sheep 
breeds.

Keywords: genomic selection, genotyping, sheep, genetic variability,  
Presented at: Session 9: Genomic’s impact on Livestock Sustainability

In traditional breeding methods animals are selected as parents for the next generations 
using breeding values estimated based on phenotypic information and genetic 
relationships (pedigree-based BLUP). In the last decade, genomic selection (GS) has 
been implemented in animal breeding by ‘upgrading’ traditional breeding methods with 
genomic information, i.e. genotypes of thousands of single-nucleotide polymorphisms 
(SNPs) covering the whole genome. Dairy breeding programs were the first to adopt GS 
showing many benefits (Schaeffer, 2006). In small dairy ruminants, implementation of 
GS is quite challenging compared to dairy cattle due to incomplete data, lack of large 
and excellent reference population, higher genetic diversity between and within sheep 
breeds, the cost of maintaining reference populations, constraints of fresh semen for 
artificial insemination (AI), and the higher costs of genotyping compared to the value 
of the animal (Van der Werf et al., 2014). Despite these obstacles, genomic evaluation 
methods can increase the accuracy of estimation compared to traditional pedigree-
based BLUP as reported in numerous dairy-oriented sheep breeding programs (Legarra 
et al., 2014, Baloche et al., 2014). A good strategy in designing reference populations 
in combination with efficient genotyping strategies gives possibility for well-designed 
breeding programs to apply cost effective GS. The benefits of GS heavily depend on 
population specific genetic parameters such as linkage disequilibrium (LD), genetic 
connectedness between flocks, effective population size, etc., and their estimation 
brought to light potential benefits of GS. Genomics can also be used as an important tool 
for assessment of genetic diversity of local sheep breeds providing accurate estimates 
of relationship between animals than pedigree records and avoiding inbreeding (Eynard 
et al., 2015). This is particularly important in cases when accurate pedigree records 
are unavailable or incomplete which is often the case in sheep populations. 

Sheep milk production is highly important in Mediterranean and Middle Eastern countries 
where most of the milk is processed into cheese of high quality. Consequently, milk 
recording is economically important to the dairy industry. According to the ICAR online 
survey, the number of European dairy ewes in official milk recording reached around 
900,000 ewes in 2021 (Astruc et al., 2023). More than half of these populations was 
recorded in France. On the other hand, countries with smaller dairy sheep populations 
like Croatia account less than 1% of milk recorded ewes. Both countries have used 
SNP arrays for the purpose of selection and conservation of dairy sheep breeds in 
their breeding programmes. The objective of this paper was to draw the benefits and 
obstacles of using genomic data in contrasting countries, i.e. large vs. small dairy 
sheep populations: France vs. Croatia. By comparing French (Lacaune, Red – Faced 
Manech, Black – Faced Manech, Basco – Béarnaise, Corsican) and Croatian (Istrian, 
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Pag) dairy sheep breeds, similarities and differences in the feasibility of GS in dairy 
sheep breeds are highlighted. 

Investments in breeding programs are often related to possibilities and improvements in: 

•	 Collecting phenotypes.

•	 Prediction of breeding values. 

• 	 Dissemination of realised selection progress. 

The main peculiarities of dairy sheep breeding programs in France and Croatia are 
disclosed in the next paragraph.

Breeding programs are implemented for five dairy sheep breeds that have traditionally 
been farmed in three mountainous areas in southern France: The Lacaune breed 
(LAC) reared in Southern Massif Central (200,000 ewes in selection and 300 new AI 
rams each year), Red – Faced Manech (MTR), Black – Faced Manech (MTN), and 
Basco – Béarnaise (BB) reared in the Pyrenean mountains (altogether 120,000 ewes 
in selection and 250 new AI rams each year), and the Corsican breed (COR) reared 
in Corsica with (18,000 ewes in selection and 20 new AI rams each year). Breeding 
programs are designed on a pyramidal structure with the production flocks at the 
base and open nucleus flocks at the top. The latter is the basis for selection based on 
genetic and nowadays genomic evaluation having official milk and pedigree recording. 
�The key point in breeding programs is usage of AI based on fresh semen (seasonal 
reproduction) mainly from the nucleus population (Larroque et al., 2014; Astruc et al., 
2022). Before genomic era, conventional breeding schemes were based on progeny-
tested AI rams. The AI rate in the flocks under selection ranges from 45% (COR) to 
85% (LAC) and the number of yearly progeny-tested rams varied from 20 rams in 
COR breed to 300 in LAC breed (Astruc et al., 2022). Genomic evaluation has been 
implemented in 2015 for the LAC breed followed by Pyrenean breeds (2017) and COR 
breed (2020). The reference populations (Table 1) are constituted of AI progeny-tested 
rams across the breed (from 0.4 K in COR to 7.4 K in LAC) with a depth getting back 
to the early 2000’s. Each year, more than 8,000 new animals are being genotyped, 
including all candidate rams and some females in flocks without AI and control matings 
are performed with medium density SNP arrays. 

The single step GBLUP method using the package BLUPf90 (Misztal et al. 2002) 
has been used for genomic evaluation. Genotypes are also used for predicting major 
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Table 1. Reference population sizes across breed in France. 

 

Breed* 
Genotyped 

rams 
Genotyped AI rams 

with daughters 
Rams genotyped 

yearly (2023) 
LAC 36 K 7.4 K (since 1996) ~3,500 
MTR 7.9 K 3.5 K (since 1998) ~700 
MTN 1.4 K 0.7 K (since 1996) ~100 
BB 2.8 K 1.2 K (since 1999) ~250 
COR 2.8 K 0.4 K (since 2003) ~350 

* LAC – Lacaune; MTR – Red – Faced Manech; MTN – Black – Faced Manech; BB – Basco 
– Béarnaise; COR – Corsican  

 
  

Table 1. Reference population sizes across breed in France.
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genes (such as scrapie, SOCS2, horn) and for parentage verification and discovery 
of unknown parents. The extra genetic gain obtained with the genomic program has 
already permitted to include novel traits more easily, such as resistance to parasites, 
and will hopefully allow other novel traits (efficiency and resilience) to be included in 
the near future. 

Creating an initial reference population is a large investment and therefore assistance 
from funding through research and development projects is required. In France four 
projects have been carried out to build the reference population and the engineering 
of the main breeds of small dairy ruminants.

Dairy sheep breeding in Croatia is concentrated in the Mediterranean part of the country 
(islands and hinterland). Two dairy breeds are included in the breeding programs: Istrian 
sheep (IST) reared in the Istrian peninsula (1,026 ewes and 35 rams in 12 flocks) and 
Pag sheep (PAG) reared in the island of Pag (4,086 ewes and 78 rams in 34 flocks). 
Milk recording started two decades ago, while BLUP genetic evaluation has been carried 
out for about a decade (CAA, 2017) based on test-day repeatability animal model 
(Špehar et al., 2020). Unlike French breeding programs, there is no AI, which hampers 
establishment of genetic connectedness between flocks and consequently leads to 
bias in the ranking of animals’ genetic merits (BVs) between the animals belonging 
to different flocks. The breeders regularly exchange rams between the flocks, but not 
systematically to exploit all the benefits of the across-flock BLUP. Furthermore, the 
population size is relatively small in both breeds, which leads to substantial level of 
inbreeding, so specially designed mating plans are required to minimize the inbreeding 
rate in both populations. Since the inbreeding is inevitable in the small population 
under selection, the Optimum Contribution Selection (OCS) approach appears to be 
the optimal selection strategy in this population to achieve genetic gain and mitigate 
the loss of genetic variability.

The future breeding strategies for these breeds are improvement of dairy performance 
through selection, which is necessarily for their long term productive and economic 
viability and maintenance of the existing genetic variability which is crucial for resilience 
in an unpredictable future environment. Implementation of the basic principles of 
genomic OCS in existing breeding program is a method of choice which enables 
selection progress on targeted trait/s with minimal loss of genetic variability. 

So far, almost the whole breeding population of IST and PAG breeds (altogether 
~4,000 animals) was genotyped (Table 2) with the Illumina OvineSNP50K BeadChip® 
for the purpose of selection and conservation. Since the Croatian breed populations 
are small, it is feasible to genotype the whole female population unlike the French 
situation where genotyping is dominantly based on males.

For the sake of higher accuracy, the existing genetic evaluation is planned to be 
upgraded to the single-step genomic BLUP (Legarra et al., 2009). Development of 
pipelines for routine genomic evaluation based on BLUPF90, a family of programs is 

Croatian dairy sheep 
population

 

Table 2. Number of genotyped animals by breed and sex in Croatia. 

 

Breed* 
Genotyped 

rams 
Genotyped 

ewes 
All 

Istrian sheep 86 1,293 1,379 
PAG sheep 140 2,543 2,683 

* IST –; PAG Pag sheep 

 
  

Table 2. Number of genotyped animals by breed and sex in Croatia.
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in ongoing phase. Knowledge of the genetic architecture of the population is important 
to predict the potential of GS. Therefore, prior to transition to GS, especially due to 
additional financial investments, it is wise to examine some important population genetic 
parameters that reflect genetic diversity within and/or between these populations 
such as effective population size, inbreeding rate, genetic connectedness between 
flocks, linkage disequilibrium, etc. It is important not only to have some clues about 
the current state of the population under consideration, but also to set up the most 
promising strategy for OCS. 

The main investment in the GS is the cost of genotyping, and so far several funding 
sources have been used for genotyping as follows: Scientific Project OPTI-SHEEP 
(CSF, IP-2019-04-3559) of Croatian Science Foundation, Rural Development 
Programme of the Republic of Croatia: Sub-Measure 10.2 – support for conservation 
and sustainable use and development of genetic resources in agriculture, and financial 
support by Breeding Association of Sheep and Goats.

In France, the annual genetic gain for economic index was estimated to be between 0.12 
(BB) and 0.35 (LAC) genetic standard deviation. This observation is consistent when: 

•	 Observing the evolution of the indices over several year. 

•	 Calculating the gain realised each year to generate a new cohort through actual 
selection intensity, accuracy and generation interval. 

As the selection indices are calculated to have the same variability of the milk yield, 
the genetic standard deviation is the one of milk yield in each breed. Based on the 
comparison between the genetic gain observed recently in genomic selection and 
the genetic gain observed several years ago before genomic selection, in the French 
sheep breeding schemes, Figure 1 showed that the extra annual genetic gains obtained 
in genomic selection vs traditional selection ranged from 16% (BB) to 57% (LAC). 
GBLUP resulted in greater accuracies of estimated breeding values (EBV) compared 
to pedigree-based BLUP although for some traits and population, the increase in 
accuracy was small. The gain in generation interval is limited. The key factor is the 
selection intensity realised for the choice of the males (which directly depends on the 
number of genotyped candidates).

In addition to single-step GBLUP, genotyping is used for prediction major genes and 
for parentage verification and discovery. Major genes were associated with various 
reproductive, disease or production traits of interest to breeders. The following major 
genes were identified and included in breeding programs: PRP (scrapie resistance), 
SOCS2 (susceptibility to inflammation of the mammary gland), and Horn (management 
of horn in MTR). As the costs of genotyping decreases, it is expected that new major 
genes like those for lethal mutations and cryptorchidism will be available in the near 
future. SNPs have proved to be useful to infer pedigree information and could be 
used both to detect misidentification of parents and to assign true parents among 
candidates. Parentage verification followed by parentage discovery has been applied on 
males chosen for genomic selection (before genomic pre-selection). For example, the 
proportion of false wrong sires in LAC and Pyrenean breeds was 4.6 and 4.4 and sire 
discovery was successful in 92% for LAC and in 87% for Pyrenean breeds. Parentage 
verification is of particular importance for sire discovery in flocks that does not use AI 
(including organic farms where synchronisation by hormones is forbidden). The extra 
genetic gain obtained with GS will be used for inclusion of new resilience (functional 

Results and 
discussion
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longevity, resistance to parasites) and efficiency (proxies of feed efficiency) traits in 
the next years (Astruc et al., 2022).

In Croatia, in order to provide basic information essential for designing the selection 
strategy in the IST breed, genetic connectedness between flocks have been examined 
(Kasap et al., 2021). The success of across-flock genetic evaluation system depends on 
the genetic connectedness between flocks. When flocks are sufficiently connected, the 
BLUP genetic evaluation is robust, and EBVs can be fairly compared between flocks. 
On the other hand, limited connectedness leads to bias when comparing EBVs of 
animals belonging to different flocks (Kuehn et al., 2008). Several statistical measures 
have been used to examine the degree of connectedness as follows: prediction error 
variance of differences in EBVs between animals belonging to different flocks, variance 
of estimated differences between management units, coefficient of determination of 
the difference between predicted breeding values, and correlation between predicted 
breeding values of individuals from different flocks. These statistics are useful to 
estimate the risk of comparing EBVs between flocks, as well as to design breeding 
schemes aimed at effectively linking flocks. Results showed that despite being useful 
in detecting flocks that tend to share breeding animals more frequently and vice versa, 
results (PEVD and CD) were insufficiently informative to tell us more about the bias 
in ranking of the animals EBVs. Connectedness based on r-connectedness statistic 
was below the acceptable level for unbiased ranking of animals belonging to different 

Figure 1. Genetic trends (in genetic standard deviation or sg) in the French dairy sheep breeds in GS 
(blue+orange) and comparison with pedigree-based BLUP (in blue).
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flocks (ri,j = 0.05). In order to increase the link between flocks in this population, some 
of the long-term specially designed breeding schemes need to be implemented. The 
best-known schemes to provide connections between different management units 
are the rotation of rams between herds (circle rams) and the sire references scheme. 

In the Croatian case, population genetic parameters that reflect genetic diversity 
such as linkage disequilibrium (LD, effective population size, and inbreeding - FROH) 
have been examined with genomic data in IST and PAG breeds. LD was estimated 
because of its influence on the expected accuracy of genomic predictions (Baloche et 
al., 2014). The estimated LD was low (r2 Pag = 0.04, D’Pag = 0.28, r2 Istrian = 0.06, 
D’Istrian = 0.39,) with a very steep LD decay (Figure 2) in both breeds (Kasap et al., 
2022). The results obtained are promising for conservation of these breeds, but less 
promising for the success of GS. To maximize benefits of genomic information, single 
step genomic BLUP should be applied for genomic evaluation. 

Effective population size and inbreeding (FROH) have been also studied in both breeds. 
There was strong evidence of recent inbreeding, and the estimate of genomic inbreeding 
(FROH) in IST (FROH>2 = 0.062) was twice as high as in PAG (FROH>2 = 0.029) and was 
on the edge of acceptable levels (Ramljak et al., 2024). Therefore, optimisation of 
mating plans is needed in the future to maintain genetic variability. Estimates of 
effective population size (Ne) evidenced more genetic variability in the PAG (Ne = 838) 
compared to the IST (Ne = 197) breed. Based on the average FROH of different size 
of ROH segments (FROH2–4, FROH4–8, FROH8–16, and FROH>16) a high contribution of recent 
inbreeding in the overall inbreeding is evident (Ramljak et al., 2024). Signatures of 
selection were found only in IST and were associated with growth, feed intake, milk 
production, and immunity traits. The results of the studied population genetic parameters 
showed an unfavourable loss of genetic variability in the Croatian sheep population 

Figure 2. The linkage disequilibrium (LD) decay in IST (red) and PAG (blue) sheep
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which is common in small population under selection. There is an urgent need for action 
to slow down this process and to create the necessary conditions (connectedness) to 
successfully utilize the entire genetic pool of the breed in a long-term selection. 

It is important here to mention as well an initiative at the international level, driven by 
ICAR, to improve genomic evaluations in multi-breed context by establishing an EU 
Reference Centre (EURC) which would be responsible for performance testing and 
genetic/genomic evaluation in small ruminants. The EURC could offer opportunities for 
better valorisation of genomic data, including across country evaluation and evaluation 
of more sheep breeds. Across country evaluation in some multi-country breeds already 
exists such is the case in the French Manech and the Spanish Latxa (ARDI project). 
Beside evaluation, the EURC could also ensure a better exchange of genotypes for 
parentage verification and for share expertise across sheep and goat breeds.

Implementing genomic selection in sheep breeding in France has shown promising 
outcomes. Genomic selection not only accelerated genetic gain by allowing breeders to 
select animals with superior traits at an early age and based on more accurate breeding 
values, but also facilitated the identification of carriers of genetic markers associated 
with disease resistance (scrapie and mastitis) and the absence of horns. On the other 
hand, in Croatia, genomic selection has not yet been implemented in practice, and 
the population parameters that have been estimated indicate that there are some 
obstacles that must be overcome in order to fully exploit the potential benefits of this 
advanced genetic evaluation system. Following the successful example of France, 
it can be concluded that genomic selection has potential for improving productivity, 
sustainability, and profitability of Croatian sheep populations as well, but hard work is 
needed to strengthen connectedness between the flocks that will be included in the 
joint across-flock evaluation system in the future. 
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In Israel, about 26% of milk production is used to produce hard cheeses and 29% for 
soft cheeses. Milk with preferred coagulation properties requires shorter coagulation 
time and yields higher curd firmness than milk with inferior coagulation properties. 
Studies have shown that milk from cows with the B allele of kappa casein (k-CN) 
produces more cheese than milk from those with A and E alleles. There is evidence of 
milk from AE or EE genotype cows being unsuitable for cheese production. In the early 
1990s, the proportion of the B allele in Israeli Holstein cattle was about 17%, similar 
to its prevalence in the Holstein population worldwide. In recent years, however, its 
proportion has increased to about 40%. We analyzed milk coagulation properties as 
a function of the cow’s k-CN genotype, including time in minutes until the beginning 
of coagulation, and curd firmness after 60 min in volts as measured in an optigraph 
device, and scored on a scale of 0–4 by the laboratory technician. Cow selection was 
based on their sire’s genotype, so that there would be sufficient genotypes that include 
the rare E allele. A total of 359 cows were sampled from 15 farms: 64 with genotype 
AA, 142 with AB, 41 with AE, 65 with BB and 47 with BE. Data were analyzed by the 
general linear model procedure of SAS. We found: (a) significant differences between 
genotypes for optigraph measured curd firmness. In a multi-comparison test, the 
BB genotype gave the highest curd firmness, and AB and BE showed a significant 
advantage compared to AA and AE (9.4, 8.6, 8.4, 6.9, 6.8 V, respectively). Assuming 
a frequency of about 55% for the A allele:

•	 about 30% of the milk delivered to dairy plants comes from AA cows; 

•	 there was a significant difference between the genotypes in technician-observed 
curd firm-ness, with BB scoring significantly higher than AA and AE; 

•	 optigraph measured curd firmness was significantly higher for milk from primiparous 
cows as compared to milk from 2nd, 3rd or 4th lactation cows (8.9, 7.8, 7.9, 7.7 
V, respectively). 

Technician observed curd firmness was significantly higher for primiparous vs. 
multiparous cows. There was a clear advantage in curd firmness for genotypes that 
included the B allele as compared to those with AA and AE genotypes. We can increase 
the proportion of B allele in the population by inseminating cows with bulls of genotypes 
AB and BB. This factor should therefore be included in the selection index.

Abstract



348

Effect of kappa-casein genotype on milk coagulation

Proceedings ICAR Conference 2024, Bled

Keywords: kappa casein; coagulation; genotype; dairy cow. 
Presented at the ICAR Anual Conference 2024 in Bled at the Session 9: Genomic’s 
impact on Livestock Sustainability 

Milk coagulation ability is important for cheese production. Milk coagulation and curd-
firming processes have been widely studied in recent decades, and milk protein fractions 
have been identified as the principal factors in these processes (Bittante et al., 2012). 
In most milk-producing countries, a large and growing fraction of the produced milk 
is used to make cheese (Ikonen et al., 1999a; Wedholm et al., 2006; Cassandro et 
al., 2008). In Israel, around 26% of milk production is used to produce hard cheeses 
and 29% for soft (white) cheeses (Israeli Dairy Board, 2020). The milk’s ability to 
coagulate (time and quality) is economically significant: milk with preferential coagulation 
properties will yield larger amounts of cheese with the desired contents than milk with 
inferior coagulation properties (Ikonen et al., 1999a). Milk coagulation properties are 
influenced by breed (Bittante et al., 2012), somatic cell count (SCC) and bacteriology 
(Leitner et al., 2019), milk protein composition and casein composition (Guinee et al., 
2006; Pretto et al., 2013; Panthi et al., 2017), and stage of lactation (Tyrisevä et al., 
2010), among other factors. In addition, the cheese-making traits can be affected by 
environmental factors such as feeding, udder health, season, physiological stage (e.g., 
parity, lactation stage), but they are also genetically influenced (Cassandro et al., 2008; 
Cecchinato et al., 2011; Tiezzi et al., 2013). Milk coagulation properties are heritable 
according to Ikonen et al. (2004) and can therefore be improved by selective breeding. 
In dairy products, the kappa casein (k-CN) component in milk proteins is responsible 
for coagulation. k-CN exists as variants AA, AB, BB, AC, BC, and AE in bovine milk, 
with allele C being more common in Jersey cows and not present in Holstein.

In the Holstein population, the gene encoding k-CN has 3 allelic variants: A, B and E. 
Most studies show an advantage for the B allele in protein and CN contents. Many 
studies have confirmed that milk containing the BB variant of k-CN has faster and 
firmer gelling ability and is more suitable for cheese production than other variants 
(Amenu et al., 2006; Ikonen et al., 1999b; Jõudu et al., 2009). According to Ng-
Kwai‑Hang (1998), milk with the BB variant of k-CN shows reduced coagulation time 
(by 10–40%) and increased curd firmness (by 20–140%) compared to milk with its AA 
variant. In particular, the most consistent effect was found for CSN3 (k-CN) variant B, 
which has been shown to have a positive effect on k-CN concentration in milk (Bobe 
et al., 1999; Hallén et al., 2008; Heck et al., 2009), and to be associated with smaller 
average casein micelle size (Walsh et al., 1998). Furthermore, cheese prepared from 
milk containing the BB variant of k-CN has higher fat recovery and yield than that made 
with milk containing the AA variant (Walsh et al., 1998). Thus, cows that produce milk 
containing the BB variant of k-CN are economically important from a cheese-making 
perspective, owing to the micelle size-related benefits of this protein type. 

The prevalence of allele B in Israeli Holstein cattle as tested in the early 1990s was 
about 17%, similar to the Holstein population worldwide (Ron et al., 1994). Ikonen et 
al. (1999a) concluded that allele E is associated with poor coagulation compared to 
the other alleles, and in some cases the milk is useless for cheese-making.

Most studies have found a significant effect of the B allele on the amount of CN in the 
milk and accordingly, the presence of this allele was found to result in 9.5–14% less 
whey protein. In a study of Jersey cows (Hunt, 2017), the prevalence of alleles E, A and 
B was 10, 30 and 70%, respectively, and Zepeda-Batista et al. (2015) found incidences 
of 3, 55 and 42% for these respective alleles in the Fleckvieh breed. Another study 
conducted in Czech Fleckvieh cattle found 5, 72 and 23% frequency of the E, A and 
B alleles, respectively (Bartonova et al., 2012). They also found that cows with the 
AA genotype produce the highest quantity of milk among the genotypes. Cows with 
the BB genotype yielded the highest amount of milk protein relative to other genotypes. 

Introduction
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Cows with genotypes BB and BE yielded milk with the highest protein percentage. 
In Lithuania (Morkūnienė et al., 2016), frequencies of the E, A and B alleles were 
6, 80 and 14%, respectively, in Black and White Holsteins; and 18, 70, and 11%, 
respectively, in Red and White Holsteins. In addition, that study clearly showed shorter 
coagulation time and firmer cheese with milk from BB cows, as compared to AA and 
AB cows’ milk, while AE cows’ milk was clearly inferior to all other genotypes in both 
parameters. Coagulation quality can be improved by increasing the prevalence of the 
B variant of k-CN and collecting direct data, such as rennet coagulation time (RCT), or 
performing genetic tests to genotype the cows. However, the latter approach is rarely 
performed. A quicker and more efficient way of estimating the prevalence of the B 
allele in advanced commercial dairy populations is to use information from the cow’s 
pedigree, especially sires, since only a very low number of sires are generally used 
each year. To-day, AI associations worldwide publish the bulls’ genotype for k-CN, 
which accounts for 11% of CN, so the farmer can also choose the inseminating bull 
according to its k-CN genotype. 

However, most studies have neglected to look at the effect of the different genotypes, 
and especially allele E, on milk coagulation parameters (MCP). Our study hypothesis 
was therefore that cows having the B allele will show superior MCP, whereas cows with 
allele E will have inferior MCP. To test this hypothesis, our objectives were to analyze 
milk coagulation properties as a function of the cow’s k-CN genotype, including time 
in minutes until the beginning of coagulation (RCT); and curd firmness after 60 min in 
volts as measured in an optigraph device, and as observed by a laboratory technician 
rated on a scale of 0–4.

We analyzed two datasets. Dataset 1 was used to estimate the k-CN allele frequency in 
Holstein cow populations in Israel, based chiefly on the genotypes of the sires. A total 
of 1447 bulls and 4430 cows were genotyped between 2011 and 2021. We routinely 
use the Bovine 150K chip for genotyping bulls and cows, and one of the out-puts is 
the k-CN genotype. All genotyping was done by Neogen (Lansing, MI, https://www.
neogen.com/about) and BeadChips v3 (Illumina Inc., San Diego, CA, https://www.
illumina.com/science/technology.html). Dataset 2 was used to analyze MCP in a group 
of cows (n = 359). Cows were selected from the herdbook according to their sire’s and 
grandsire’s allele for k-CN, to reach a balanced sample that includes all genotypes. We 
selected 391 cows with sire genotypes AE, BE and BB to have a sufficient number of 
cows presenting the different genotypes for the study. The selected cows were tested 
for their k-CN genotypes from a hair sample (Neogen). Cows with known k-CN genotype 
were sampled according to the following protocol: cows in mid-lactation (average of 
148 d) and cows with SCS (Somatic Cell Score) lower than 4 (average of 2.03) were 
checked for clinical or subclinical mastitis using the California mastitis test (CMT) on 
the quarter level; If a quarter show that CMT result was positive (1 or higher) we didn’t 
took milk sample from this specific quarter and the quarter was removed from the MCP 
analysis. So, when taking samples we used the quarter as the experimental unit. After 
we collected the milk sample the experimental unit was the cow. In total, we tested 
359 cows from 15 dairy farms.

A milk sample was collected (30–45 mL of a mixture of whole udder yield) and di-vided 
into 2 different samples for analysis as follows: the first sample was tested for SCC 
with a Fossomatic 360 (Foss Electric, Hillerød, Denmark) and gross milk composition, 
i.e., protein, fat and lactose contents, with the MilkoScan FT6000 (Foss Electric). 
These analyses were performed at the Israel Cattle Breeders’ Association laboratory 
(Caesarea, Israel); the second sample was tested for curd firmness after 60 min (CF‑60) 
and RCT with an optigraph (Ysebaert, Frepillon, France), and for curd firmness as 
ob-served by the same laboratory technician after every cheese-making session, who 

Materials and 
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scored the curd from 0 – weak and more liquid to 4 – hard and more stable. Samples 
(10 mL) were placed in wells and equilibrated at 30°C. The coagulating enzyme was 
Fromase 15 TL (0.5 mL, Gist-Brocades NV, Delft, The Netherlands), diluted (1:100) 
to achieve clotting within about 900 s in bovine milk (Leitner et al., 2011).

Dataset 2 included 359 cows. The MCP were analyzed by the GLM procedure of SAS 
(2009, SAS Institute Inc., Cary, NC). The analysis model was: 

Yijklm = Hj + Lk + Gl + SCSijkl + Mijkl + PFijkl + PPijkl + Dijkl + eijklm, 	

where the dependent variables, Yijklm, were CF-60 and RCT of cow i in herd j of parity k, 
with genotype G; Hj was herd effect j; Lk was parity effect k (1,2,3,4+); Gl was genotype 
effect l (AA, AB, AE, BB, BE); SCSijkl, Mijkl, PFijkl, and PPijkl were the effects of test 
day SCS, milk, % fat and % protein records of cow i; D was days in milk effect (DIM) 
on the date of the milk sample; and eijklm was the random residual.

Multiple comparisons for significance among the genotype effectss were tested by 
Bonferroni procedure. All first-degree interactions were tested and found to be non-
significant and were therefore excluded from the final models. Results for a level of a 
specific variable included in the model was based on least square (LS) mean values 
as presented in Lavon et al. (2011).

The frequencies of k-CN alleles and genotypes from dataset 1 are presented in Table 1. 
The allele frequencies of A, B and E were 57.1, 40.3 and 2.6%, respectively. The 
genotype frequencies of AA, AB, AE, BB, BE and EE were 32.47, 46.33, 2.84, 16.05, 
2.28 and 0.03%, respectively. 

Distribution of alleles and genotypes in the cows from dataset 2 are summarized in 
Table 2. Our sampling protocol resulted in >40 cows for all genotypes, except for EE, 
which was very rare in the population. The allele frequencies of A, B and E were 43.31, 
44.43 and 12.26%, respectively. The genotype frequencies of AA, AB, AE, BB, BE and 
EE were 17.83, 39.55, 11.42, 18.11, 13.09 and 0.00%, respectively.

Data analysis

Results

Table 1. Genotype frequency and k-CN alleles from dataset 1.
 

Table 1. Genotype frequency and κ-CN alleles from dataset 1. 
 

Frequency (%)  n Allele Frequency (%)  n 1Genotype 
57.11 6706 A 32.47 1908 AA 
40.28 4743 B 46.33 2723 AB 
2.61 305 E 2.84 167 AE 
   16.05 943 BB 
   2.28 134 BE 
   0.03 2 EE 
100 11754  100 5877 Total 

1A total of 5,877 bulls and cows were genotyped using the Bovine 150K chip between 2011 
and 2021.  
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Test-day results for milk yield, milk solids content, SCS and DIM for each genotype 
are summarized in Table 3. Cows with the AA genotype had lower percentages of milk 
fat and protein, but differences between the genotypes for the test-day parameters 
were not significant.

Milk coagulation traits (CF-60 and RCT) were affected by k-CN genotype (Figure 1A 
and B) and by lactation number (Figure 2A and B). Cows with genotype BB had the 
highest curd firmness, followed by cows with the B allele in combination with A or E 
(P < 0.05; Figure 1A). Cows with AA or AE genotype (without the B allele) had the 
lowest curd firmness (P < 0.05; Figure 1a). Milk from cows with the B allele took less 
time to coagulate (lower RCT), especially the BB cows, but the difference was not 
significant (Figure 1B). Higher curd firmness was obtained from primiparous cows’ milk 
compared to that of multiparous cows, with no difference found among the multiparous 
cows (P < 0.05; Figure 2A). The RCT was lower for the primiparous vs. multiparous 
cows, but the difference was only significant compared to second-lactation cows 
(P < 0.05; Figure 2B). 

Table 2. Genotype frequency and k-CN alleles found in cows included in dataset 2.Table 2. Genotype frequency and κ-CN alleles found in cows included in dataset 2. 
 

Frequency (%) N Allele Frequency (%) 2n 1Genotype 
43.31 311 A 17.83 64 AA 
44.43 319 B 39.55 142 AB 
12.26 88 E 11.42 41 AE 

   18.11 65 BB 
   13.09 47 BE 
   0 0 EE 
100 718  100 359 Total 

1Cow genotype was tested in a hair sample taken from each cow. 
2Data of 359 cows from 15 different dairy farms.  

 

  

Table 3. Test-day results for milk yield, milk solids contents, SCS and DIM according 
to cow genotype for k-CN.

 
Table 3. Test-day results for milk yield, milk solids contents, SCS and DIM according to cow 
genotype for κ-CN. 
 

1Genotype 2n Milk (kg) (%) 3Fat Protein (%) SCS DIM 
AA 64 42.6 3.18 3.20 1.8 135 
AB 142 40.3 3.54 3.30 2.1 147 
AE 41 39.7 3.41 3.30 2.2 161 
BE 47 39.6 3.49 3.36 2.4 172 
BB 65 43.5 3.43 3.27 1.8 140 

Total 359 41.4 3.43 3.28 2.0 149 
1Cow genotype was tested in a hair sample taken from each cow. 
2Data of 359 cows from 15 different dairy farms. 
3Milk solids and SCC were tested at the Israel Cattle Breeders Association laboratory.  
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Figure 2. Effect of lactation number on (A) curd firmness after 60 min 
(CF-60) and (B) rennet coagulation time (RCT). Values are LS means 
± SEM. Different letters indicate significant difference (P < 0.05)

Figure 1. Genotype effect on (A) curd firmness after 60 min (CF-60) 
and (B) rennet coagulation time (RCT). Values are LS means ± SEM. 
Different letters indicate significant difference (P < 0.05).

 

 

Figure 1. Genotype effect on (A) curd firmness after 60 min (CF-60) and (B) rennet 
coagulation time (RCT). Values are LS means ± SEM. Different letters indicate 
significant difference (P < 0.05). 

 

 

 

 

Figure 2. Effect of lactation number on (A) curd firmness after 60 min (CF-60) and 
(B) rennet coagulation time (RCT). Values are LS means ± SEM. Different letters 
indicate significant difference (P < 0.05). 
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Table 4 presents the model effects, SE and P-values for the effects of genotype, 
lactation number, log SCC, milk yield, milk fat and protein percentages and DIM on 
RCT and CF-60. With respect to the former, there was no difference among genotypes. 
In contrast, cows in first lactation showed reduced time to coagulation than the older 
cows (Table 4; P < 0.0001). There was significantly higher curd firmness as determined 
by CF-60 for cows with the BB genotype. The order of curd firmness (high to low) was: 
BB > AB > BE > AA > AE (Table 4; P < 0.0001). In addition, milk from first-lactation 
cows gave higher curd firmness than that of older cows (Table 4; P < 0.0001).

The 10 cows with the highest and lowest curd firmness scores are given in Table 
5. Of the 10 cows with the highest curd firmness, 9 had the B allele and 6 had the 
BB genotype (Table 5). Of the 10 cows with the lowest curd firmness, only 1 cow had 
allele B and all of the cows had the A or E allele. This clear distinction was not apparent 
with respect to the RCT values. 

Table 4. Effects of genotype, lactation number, SCS, milk yield, milk fat and protein percentages and 
DIM on rennet coagulation time (RCT) and curd firmness at 60 min (CF-60).
Table 4. Effects of genotype, lactation number, SCS, milk yield, milk fat and protein percentages 
and DIM on rennet coagulation time (RCT) and curd firmness at 60 min (CF-60). 
 

Factor Level RCT SE Pr > |t| CF-60 (V) SE Pr > |t| 
Genotype    0.3409   <.0001 

 

AA 1.36 0.848  -2.14 0.253  
AB -0.01 0.711  -0.85 0.212  
AE 0.24 0.959  -2.44 0.286  
BE 0.94 0.908  -1.27 0.271  
BB 0.00 -  0.00 -  

Lactation number    0.0006   <.0001 

 

1 -2.73 0.829  1.20 0.247  
2 0.23 0.720  0.21 0.214  
3 -0.02 0.810  0.05 0.241  
4 0.00 -  0.00 -  

SCS   0.36 0.168 0.0349 -0.03 0.050  
Milk (kg)   -0.11 0.040 0.0064 0.05 0.012 <.0001 
Fat (%)   -1.03 0.413 0.0132 0.77 0.123 <.0001 

Protein (%)   1.67 0.979 NS 2.69 0.292 <.0001 
DIM   0.01 0.004 0.0006 0.0028 0.001 0.0237 

 
 

  

Table 5. Effect of k-CN genotype on milk coagulation parameters.
 
Table 5. Effect of κ-CN genotype on milk coagulation parameters. 
 

10 cows with the highest CF-60 scores 10 cows with the lowest CF-60 scores 
Visual index RCT CF-60 Genotype Visual index RCT CF-60 Genotype 

3.7 15.8 14.6 BB 2.8 14.3 4.2 AE 
3.7 19.5 14.4 BE 1.0 21.9 4.2 AA 
3.7 18.5 14.1 AA 2.5 19.1 4.1 AE 
3.3 16.1 13.4 AB 3.4 17.3 4.0 AE 
3.8 22.8 13.2 BB 2.6 18.6 3.8 AE 
3.8 16.4 13.0 BB 0.0 42.4 3.4 AB 
3.7 21.1 12.8 AB 0.0 42.1 3.4 AE 
3.9 14.9 12.8 BB 3.5 12.7 3.3 AE 
3.6 20.8 12.3 BB 1.9 13.7 2.8 AA 
3.6 18.9 12.3 BB 0.2 31.6 0.3 AA 
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This study presents the current distribution for k-CN genotypes and alleles in the Israeli 
dairy population. Most publications show an advantage for the B allele in protein and 
CN content. The prevalence of allele B in Israeli Holstein cattle in the early 1990s was 
about 17% (Ron et al., 1994). In the current study, prevalence of the B allele has more 
than doubled, to around 40% in the entire population. This strong increase stems from 
the advantage of the B allele for protein content, which is the major objective in the 
Israeli breeding index (Weller et al., 2022). In contrast, prevalence of the E allele has 
decreased from about 6% to 2.6%. 

Cheese-making requires milk coagulation and development of syneresis. The dairy 
industry pays a great deal of attention to MCP, principally because the amount of 
milk used for cheese production is growing worldwide (International Dairy Federation, 
2020). In the last decade, the fraction of total milk destined for cheese production 
has increased by about 10% in the European Union and North America, and it is now 
slightly higher than 50% in the EU and slightly lower in North America. An increase in 
the amount of milk used to manufacture cheese has been reported in other European 
countries, Oceania, and Latin America, whereas a much lower amount is used as 
com-pared in Asia and Africa. The B variant of k-CN is associated with a higher protein 
percentage compared to the E variant, with the A variant being intermediate between 
the two (Heck et al., 2009). Milk production is correlated with k-CN genotypes in the 
order AB > AA > BB (Hristov et al., 2014). The order of k-CN genotypes as they relate 
to protein content is BB > AB > AA (Aleandri et al., 1990), or AB > AE > AA (Devold 
et al., 2000). 

However, Lodes et al. (1997) found the opposite order, i.e., AA > AE > AB. In addition, 
Ikonen et al. (1999a) reported that the EE, AE and BE variants contribute to high milk 
yield, but low protein percentage. The BB variant was found to be positively correlated 
with milk and milk-protein production during the first lactation (Mao et al., 1992). In 
the current study we did not find any correlation between genotype and milk level or 
milk solids content. Comin et al. (2008) reported that k-CN is the most important milk 
protein in rennet coagulation, as it is the key to CN micelle stability, providing steric and 
electrostatic repulsion between micelles to prevent aggregation through the surface 
‘hairy’ layer of micelles (Jensen et al., 2012). The B variant is found to be associated 
with high milk quality in European cattle breeds (Martin et al., 2002) and, compared 
to the A variant, B is found to be associated with shorter RCT (Lundén et al., 1997). 
Cheese formed using milk with the BB variant has higher yield, higher protein content 
and better quality compared to the AB variant (Ron et al., 1994). 

The different genetic milk-protein variants and CN haplotypes have a major effect on the 
protein composition of milk. In general, the A allele of k-CN has been associated with 
a longer RCT and weaker curd (Hallén et al., 2007). We found higher curd firmness in 
cows with the B allele as compared to those without it. Genotype BB had the highest 
curd firmness (CF-60), followed by AB, BE, AE, and AA with the lowest curd firmness. 
The RCT was lower, in agreement with higher curd strength, in cows with allele B, 
but this difference was not significant. Cow age (primiparous vs. multiparous) had a 
significant effect on MCP, where first-parity cows had higher curd firmness and lower 
RCT compared to older cows. A determination of MCP in the entire cow population 
is not practical, due to the large effort and expense required. An alternative way of 
improving MCP indirectly might be to favor the B allele of k-CN in the selection of bulls 
for general service.

This study shows the result of the Israeli breeding program which favors bulls and 
cows with higher percentages of milk solids. We noted a steep rise in frequency of the 
B allele in the population, which can improve coagulation properties. The current study 

Discussion

Conclusions
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analyzed a large number of dairy cows with known genotypes for k-CN. We found that 
the presence of the B allele for k-CN is associated with superior coagulation parameters 
(CF-60 and RCT) compared to cows without the B allele. Cows with AA or AE genotype 
had lower curd firmness compared to cows with the BB, AB or BE genotype. We 
also found that primiparous cows present superior coagulation parameters (CF-60 
and RCT) compared to cows in their 2nd, 3rd or 4th lactation. Inclusion of the k-CN 
genotype in the Israeli selection index could further raise the frequency of the B allele 
in the population as a direct effect and have an indirect effect through the percentage 
of milk solids, leading to a faster rise in the B allele and improved MCP for the milk 
industry in Israel.

We thank Afimilk (Afikim, Israel) for testing the coagulation parameters.
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Many milking systems with inline milk meters can record the milk yield and duration 
of each milking for individual cows. The objective of this work was to determine the 
suitability of milking speed traits for genetic and genomic selection and the amount of 
phenotype data required to produce a reliable evaluation. Records from January 2021 
to December 2022 were retrieved by Dairy Records Management Systems, comprising 
data from 305 herds, 9 different original equipment manufacturers and 23,201 complete 
lactations of 23,180 cows, including 4,246 genotyped cows. 

Milking speed was defined as milk yield divided by milking duration for each individual 
milking. Four traits were compared: 

1.	 Average of total lactation data for all parities.

2.	 Average of test days for all parities.

3.	 Average of total lactation data for first parity only.

4.	 Average of test days for parity 1. 

Breed, milking frequency, parity, lactation length, and meter manufacturer were included 
in the genetic model along with genetic groups and permanent environment. The 
pedigree relationship matrix included 219,703 animals with records or descendants 
with records plus 96 million other animals. Variances were estimated by both Gibbs 
sampling and REML; estimates were very similar. Residual variance was 51% higher 
for test day traits compared to total lactation traits. Milking speed test day heritability 
was 28% vs. 37% for total lactation data; genetic correlation between them was 0.97, 
suggesting that even with a 99% reduction in amount of phenotypic data included they 
are describing the same trait. Milking speed was less stable in parity 1 compared to 
other parities, but high genetic correlations (> 0.92) suggest the same trait is being 
captured. Milking speed had a small favorable genetic correlation with milk yield but 

Abstract
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unfavorable with somatic cell score based on 756 Holstein bulls with reliability > 50%. 
Genomic predictions for young animals born in the last 10 years averaged 37% reliability 
compared to ~70% reliability for several other traits. We conclude that evaluations for 
milking speed are not only feasible but would have significant economic impact for 
producers using various milking systems. Work on implementing an evaluation for 
milking speed is currently underway. 

Keywords: milking speed, heritability, genomic prediction, genetic selection. 
Presented at the ICAR Anual Conference 2024 in Bled at the Session 9: Genomic’s 
impact on Livestock Sustainability   

In October of 2021, the Council on Dairy Cattle Breeding (CDCB) appointed a task force 
to investigate the feasibility to implementing milking speed (MSPD) evaluations in the 
United States. The research efforts to standardize a phenotype definition for quantitative 
measures of MSPD derived from electronic in-line milk meters have been previously 
described in Miles et al., (2022) and Miles et al., (2023). The major conclusions of this 
work were that milking frequency, parity, breed, and milking meter manufacturer (OEM) 
all have substantial effects on quantitative MSPD phenotypes. Data sparsity remains a 
major challenge – as phenotypes are stratified by more factors, trends become harder 
to elucidate and there is a significant reduction in statistical power. Thus, the research 
presented in this paper was conducted using only Holstein phenotypes collected from 
conventional milking parlors (no robotic systems). The goals of this research were to 
determine the heritability of various MSPD traits and develop methods for genetic and 
genomic evaluations that can be feasibly implemented in the USA. 

Records from January 2021 to December 2022 were retrieved by Dairy Records 
Management Systems, comprising data from 305 herds, 9 different original equipment 
manufacturers (OEM) and 23,201 complete lactations of 23,180 cows, including 
4,246 genotyped cows. Milking speed was defined as milk yield divided by milking 
duration for each individual milking between 10 and 305 days in milk (DIM). Four 
possible traits were compared: 

1.	 Avg_all: average of total lactation data for all parities, 

a. 	a hypothetical 3X cow would have 3 * 295 DIM = 885 records contributing 
to phenotype 

2.	 Avg_TD: average of test days for all parities, 

a. 	a hypothetical 3X cow would have 3 * 10 test days = 30 records contributing 
to phenotype, and a ~34% reduction in data

3.	 Avg_all_P1: average of total lactation data for first parity only, 

4.	 Avg_TD_P1: average of test days for first parity only. 

Trait 1) represents the most complete phenotype it is possible to assemble; Trait 2) 
was evaluated to address the feasibility of collecting, transmitting, and storing the data 
required to compute Trait 1; Traits 3) and 4) were evaluated to address the potential 
that MSPD is a different trait for first parity animals. 

Breed, milking frequency, parity, lactation length, and meter manufacturer were included 
in the genetic model along with genetic groups and permanent environment. The 
pedigree relationship matrix included 219,703 animals with records or descendants 
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with records plus 96 million other animals. Variances were estimated by both Gibbs 
sampling and REML; estimates were very similar and REML was used in evaluation 
models.

The higher residual variance observed in TD traits (Table 1) is expected because there 
are fewer data points. The higher heritability observed for Average_all_P1 was not 
expected, but there is greater standard error indicating heritabilities are less accurate 
with less data. Both P1 traits have higher residual variance suggesting MSPD is 
less stable in first parity, the very high h2 SE for Average_TD_P1 (0.21± 0.18) may 
be related to the fewer number of animals but suggests this trait is less useful than 
others compared. 

Avg_all and Avg_TD had high genetic correlation (0.97) suggesting they are describing 
the same trait even with a significant reduction in data (Table 2). Parity 1 traits were 
also highly correlated (>92%) to MSPD traits including all parities, suggesting that they 
can be evaluated together with other parities. 

Approximately 23,000 cows had full lactations for phenotype assembly. Preliminary 
PTAs were generated with the fixed effects of breed, parity, and OEM. Below are 
descriptive stats on >50% REL HO bulls born since 2012 for each of the four MSPD 
traits (Trait 1 inTable 3; Trait 2 in Table 4; Trait 3 in Table 5, Trait 4 in Table 6), with 
comparison to SCS and NM$.

Results and 
discussion

Table 1. Heritabilities, standard error, and residual variance computed for each trait in 
AIMREMLF90 ver. 1.148.

Table 2. Genetic correlations (upper diagonal) and phenotypic correlations (lower diagonal) 
for traits compared

Table 3. Predicted Transmitting Ability (PTA) and Reliability (REL) for Avg_all (n = 772 bulls, genetic 
correlation with somatic cell score (SCS) = 0.38, Net Merit (NM$) = 0.07).

 
Table 1. Heritabilities, standard error, and residual variance computed for each trait in AIMREMLF90 ver. 
1.148. 
 
Trait N h2 (SE) Residual Variance 
Trait 1) Avg_all 23,180 0.37 ( 0.02) 1.10 
Trait 2) Avg_TD 22,227 0.28 ( 0.02) 1.66 
Trait 3) Avg_all_P1 9,569 0.38 ( 0.04) 1.12 
Trait 4) Avg_TD_P1 9,208 0.21 ( 0.18) 2.05 

 
 
Table 2. Genetic correlations (upper diagonal) and phenotypic correlations (lower diagonal) for traits 
compared 
 
 Avg_all Avg_TD Avg_all_P1 Avg_TD_P1 
Avg_all  0.968 0.916 0.976 
Avg_TD 0.821  0.944 0.991 
Avg_all_P1 1.000 0.819  0.924 
Avg_TD_P1 0.820 1.000 0.819  
 
 
 
 
Table 3. Predicted Transmitting Ability (PTA) and Reliability (REL) for Avg_all (n = 772 bulls, genetic 
correlation with somatic cell score (SCS) = 0.38, Net Merit (NM$) = 0.07). 
 
 PTA REL 
Trait Min Mean SD Max Min Mean SD Max 
MSPD -0.80 0.12 0.30 1.00 50.10 67.05 11.84 97.80 
SCS -0.72 -0.17 0.18 0.67 50.00 92.95 10.50 99.90 
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Table 4. Predicted Transmitting Ability (PTA) and Reliability (REL) for Avg_TD (n = 603 bulls, 
genetic correlation with somatic cell score (SCS) = 0.43, Net Merit (NM$) = 0.06).

Table 5. Predicted Transmitting Ability (PTA) and Reliability (REL) for Avg_all_P1 (n = 344 bulls, 
genetic correlation with somatic cell score (SCS) = 0.42, Net Merit (NM$) = 0.09).

Table 6. Predicted Transmitting Ability (PTA) and Reliability (REL) for Avg_TD_P1 (n = 198 bulls, 
genetic correlation with somatic cell score (SCS) = 0.51, Net Merit (NM$) = -0.01).

The above data suggest that producing a reliable evaluation for MSPD using quantitative 
inline meter data is possible. While using a significantly reduced dataset (e.g., the TD 
traits) appears adequate, the task force recommends adopting Trait 1) Avg_all with 
the highest heritability with lowest standard error and residual variance in the model. 
Ensuring data flow will be critical to the successful implementation of this trait, and a new 
data transfer Format 8 has been developed to provide the required data for delivery of 
a MSPD evaluation. Collection, transfer, and storage of high-resolution sensor-based 
data like that used in this study requires significant investment in infrastructure by 
both CDCB and USA data providers. Work is ongoing in this area and represents an 
opportunity to develop pipelines and precedent for other high-throughput phenotypes 
besides MSPD. 

Miles A.M., R Fourdraine, S. Sievert, K. Gaddis, J. Bewley, S. Eaglen, 
J. Weiker, and J. Durr. 2022. Considerations in using quantitative measurements of 
milking speed for geneti.c evaluation in the USA. Proceedings of the 2022 Interbull 
Meeting 57:48-53.

Miles A.M., R. Fourdraine, J.L. Hutchison, S. Sievert, K. Gaddis, 
J. Bewley, S. Eaglen, J. Weiker, and J. Durr. 2023. System and biological effects 
on quantitative milking speed phenotypes from inline milk meters. Proceedings of 
the 2023 ICAR Meeting, ICAR Technical Series No. 27:175-180.  
https://www.icar.org/Documents/ITS-27-Toledo-2nd-draft.pdf

 
Table 4. Predicted Transmitting Ability (PTA) and Reliability (REL) for Avg_TD (n = 603 bulls, genetic 
correlation with somatic cell score (SCS) = 0.43, Net Merit (NM$) = 0.06). 
 

 PTA REL 
Trait Min Mean SD Max Min Mean SD Max 

MSPD -0.84 0.09 0.30 1.02 50.10 65.31 11.25 97.10 
SCS -0.72 -0.17 0.18 0.67 50.00 93.28 10.55 99.90 
 
 

Table 5. Predicted Transmitting Ability (PTA) and Reliability (REL) for Avg_all_P1 (n = 344 bulls, genetic 
correlation with somatic cell score (SCS) = 0.42, Net Merit (NM$) = 0.09). 
 
 PTA REL 
Trait Min Mean SD Max Min Mean SD Max 
MSPD -0.76 0.17 0.30 1.03 50.10 67.10 11.81 94.60 
SCS -0.72 -0.18 0.19 0.67 50.00 89.10 13.68 99.90 
 
 
 
Table 6. Predicted Transmitting Ability (PTA) and Reliability (REL) for Avg_TD_P1 (n = 198 bulls, genetic 
correlation with somatic cell score (SCS) = 0.51, Net Merit (NM$) = -0.01). 
 
 PTA REL 
Trait Min Mean SD Max Min Mean SD Max 
MSPD -0.46 0.15 0.28 0.82 50.20 64.00 10.09 91.20 
SCS -0.58 -0.17 0.18 0.31 50.00 89.56 13.71 99.90 
 
 
 Conclusions
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genetic merit of Beef on Dairy cross calves 
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An increasing number of dairy farms are interested in managing their replacement 
heifer inventories. They utilize genomic testing and sexed semen to create enough 
replacement heifers for their dairy herd replacement needs. From a dairy system 
sustainability perspective, this facilitates the opportunity to utilize beef semen on cows 
not destined for dairy replacement purposes to increase profitability based on beef on 
dairy cross calve production. In general, these beef on dairy calves have advantages 
over straightbred dairy calves; however, there is interest in specific animal performance 
insights in this growing class of beef on dairy cattle. With the large influx of beef-
influenced dairy cattle into the feeder space, it is becoming more imperative to better 
understand the genetic differences among those calves. This need has led Neogen to 
develop a commercial genomic testing tool to help rank beef influenced dairy calves 
for terminal traits of interest. This facilitates an opportunity to choose how to manage 
the animals through the growth and finishing stages of production. 

In a study population of 1,002 feedlot cattle, we investigated the genomic breed 
composition as well as the relationship between genomic prediction of performance 
and actual phenotypic harvest and performance data. Samples taken on 438 steers and 
564 heifers were approximately 55% beef influence and 45% dairy influence. Statistical 
analysis (R software) demonstrated positive correlations between Igenity® scores and 
phenotypic performance of 0.29, 0.23, and 0.22 for marbling (MARB), average daily gain 
(ADG), and hot carcass weight (HCW), respectively. Furthermore, when ranking cattle 
according to Neogen’s Terminal Index and comparing the top quartile (average = 6.71) 
to the bottom quartile (average = 5.22) of animals, phenotypic performance was 
significantly different for ADG (1.32 kg/d vs. 1.24kg/d, P < 0.001, respectively), HCW 
(390.6 kg vs. 372.2 kg, P < 0.001), and USDA yield grade (2.59 vs. 2.43, P < 0.05). 
Based on August 2022 grid pricing, this resulted in a ~US$78 difference in individual 
carcass revenue, per head between Terminal Index top quartile and bottom quartile. 
Igenity® BeefxDairy demonstrates a viable opportunity to manage animals relative to 
their genetic potential during the feeding period, representing appropriate investment 
of precious feedstuffs and improving the production footprint of beef production out 
of dairy cows.

Keywords: genetic profiling, breed verification, calf management. 
Presented at the ICAR Anual Conference 2024 in Bled at the Session 9: Genomic’s 
impact on Livestock Sustainability  
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The use of genomic information can provide more reliable phonotypic estimates, which 
are essential for designing or refining selection indicators in cattle breeding programs 
(Pedrosa et al, 2023). Genomic selection has been shown to increase accuracy and 
decrease generation interval in US dairy cattle (Guinan et al, 2023). Dairy farms are 
working to increase the value of every calf produced on the farm. Many farms are 
utilizing beef semen on the dairy cow inventory which they need to maintain and get 
more lactations out of due to development costs, but those cows do not represent the 
future genetic attributes for replacement female creation (NAAB, 2022). As the calves 
are generated from beef semen on dairy cows, many producers want to genetically 
confirm three key attributes of those calves:Are they really beef x dairy cross? If so, 
what is the percent beef and the percent dairy of the individual?

Can I sort and manage these animals based on their ability to grow?

Can I have a prediction of what the likely revenue potential of this animal will be at 
harvest?

Beef production from dairy cows offers a unique opportunity to utilize animals less 
suitable for dairy herd replacement. However, optimizing their growth and carcass 
quality requires efficient management strategies. This study aims to evaluate the 
effectiveness of Igenity® BeefxDairy, a novel genetic testing technology, in identifying 
the genetic potential for growth and carcass traits on dairy herds.

Cattle for this study were sourced as Beef x Dairy cross cattle entering commercial 
feedlots in the summer and fall of 2020. Samples for Igenity® BeefxDairy (Neogen 
Corporation) genetic testing were collected with tissue sampling units (TSUs, AllFlex) 
at time of arrival into the feedlot with other feedlot entry processing activities. Cattle 
were managed under the feedlot’s normal management system and harvest dates 
were chosen by feedlot management based on lot based optimum harvest date. 
Cattle (438 steers and 564 heifers entered the feedlot at an average of 570.0 pounds 
and were fed an average of 274.1 days with average hot carcass weight at harvest of 
844.6 pounds (Table 1).

Introduction

Materials and 
methods

  
 
Table 1. Summary statistics for carcass traits, closeout data, and Igenity scores. 
 

Variable n Mean SE Range 
Enrollment wt, lb 1002 570.09 3.22 355 to 950 
Days on feed, d 1002 274.11 0.80 207 to 305 
ADG, lb/d 1002 2.84 0.01 0.81 to 4.06 
HCW, lb 1002 844.62 2.87 511 to 1149 
USDA Quality Grade1 1002 2.83 0.01 2 to 4 
USDA Yield Grade 1002 2.52 0.03 1 to 5 
Rib-eye area, sq in 1002 13.86 0.05 9.1 to 19.5 
Marbling 1002 498.27 3.30 310 to 898 
Fat Thickness, in 1002 0.49 0.01 0.12 to 1.16 
Igenity Score     
    Marbling 1002 5.73 0.04 2 to 8 
    Rib-eye area 1002 6.86 0.04 3 to 10 
    12th-rib fat thickness 1002 4.92 0.04 1 to 7 
    HCW 1002 6.47 0.04 2 to 9 

 
 
  

Table 1. Summary statistics for carcass traits, closeout data, and Igenity scores.
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The average breed composition of animals in this study was 55% Beef and 45% Dairy. 
Igenity® BeefxDairy scores represented the majority of the expected 1 to 10 range for the 
traits of interest: average daily gain (ADG); marbling (MARB); and hot carcass weight 
(HCW). Furthermore, Igenity Terminal Index (ITI) was calculated for each animal and 
then animals were sorted into quartiles based on ITI for further evaluation and reporting.

Performance of the cattle in the feedlot and carcass trait information is summarized in 
Table 1, which represents tremendous variability which exists within the beef x dairy 
cattle production systems. 

Robust positive relationships were found between Igenity® BeefxDairy scores and 
actual phenotypic performance across both steers and heifers for average daily gain 
(Figure 1), marbling (Figure 2), and hot carcass weight (Figure 3).

Results and 
discussions

Igenity BeefxDairy 
report information 

Performance 
information

Figure 1. Robust positive relationships were found between Igenity® BeefxDairy scores and actual phenotypic 
performance across both steers and heifers for average daily gain (Figure A), marbling (Figure B), and hot 
carcass weight (Figure C).

 

 
Figure A                                            Figure B Figure C 
 
 
Figure 1. Relationships between Igenity® BeefxDairy scores and actual phenotypic performance across both 
steers and heifers for average daily gain (Figure A), marbling (Figure B), and hot carcass weight (Figure C). 
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Phenotypic performance for animals in the top 25% based on ITI were compared to 
animals in the bottom 25% for ITI and were tested for significant differences. Significant 
(P < 0.05) differences were found between top quartile ITI animals and bottom quartile 
ITI animals for enrollment weight, average daily gain, hot carcass weight, USDA yield 
grade and revenue (Table 2). Marbling score had a suggestive (0.05 < P < 0.10) 
difference between top quartile ITI animals and bottom quartile ITI animals. This is 
likely due to the modest emphasis of marbling in the ITI compared to weight.

Revenue for each individual animal was calculated based on the value-based pricing 
grid represented in Table 3. Top ITI quartile animals averaged $77.23 more per animal 
than the bottom ITI quartile animals.

Igenity® BeefxDairy is a viable tool to manage animals relative to their genetic potential 
during the feeding period, representing appropriate investment of precious feedstuffs 
and improving the production footprint of beef production out of dairy cows.

Igenity® Terminal 
Index (ITI) Quartile 
Analysis

Conclusions
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Table 3. Beef carcass grid premiums and discounts used for carcass revenue calculation, 
$US/Carcass.

Table 2. Summary statistics and difference in revenue between the top 25% and bottom 
25% of animals based on Igenity® Terminal Index (ITI).

 
Table 2. Summary statistics and difference in revenue between the top 25% and bottom 25% of animals 
based on Igenity® Terminal Index (ITI) 
 

 Top 25% Bottom 25%  

 N = 250 N = 250 P value1 
Average Terminal Index 6.71 5.22 P < 0.01 
    
Enrollment Weight, lbs 586.10 564.03 P < 0.05 
Days on Feed, d 271.13 272.47 P = 0.57 
Average Daily Gain, lb/d 2.91 2.73 P < 0.01 
Marbling Score2 504 489 P = 0.09 
12th – rib fat thickness, sq in 0.49 0.49 P = 0.98 
HCW, lbs 861.17 820.55 P < 0.01 
USDA Quality Grade3 2.86 2.79 P = 0.11 
USDA Yield Grade 2.59 2.43 P < 0.05 
Revenue4, $ 1500.62 1423.39 P < 0.01 
Difference per animal $77.23   

1Calculated using a two-sided t-test, P < 0.05 considered significantly different. 
2Marbling score: < 300 = Trace, 300 = Slight, 400 = Small, 500 = Modest, 600 = Moderate,  
>700 = Slightly Abundant 
Grades: 1 = USDA Standard; 2 = USDA Select; 3 = USDA Choice; 4 = USDA Prime. 
4Revenue calculated using the grid in Table 3. 
 
 
 
 
  

 
 

 
Table 3. Beef carcass grid premiums and discounts used for carcass revenue calculation, $US/Carcass  
 

USDA Quality Grade 

USDA Yield Grade 

1 2 3 4 5 

Prime 22.19 20.185 18.61 7.38 1.76 

Choice 3.58 1.575 Base2 -11.23 -16.85 

Select -20.67 -22.675 -24.25 -35.48 -41.10 

Standard -22.19 -32.355 -33.93 -45.16 -50.78 

Base Price/CWT: $179.28 

400-500 lb -29.29   900-1000 lb -1.07 

500-550 lb -22.64   1000-1050 lb -5.00 

550-600 lb -11.57   Over 1050 lb -16.07 
1 Prices summarized from USDA National Weekly Direct Slaughter Cattle Report August 3. 2022 
2 Premiums and discounts given $/CWT of hot carcass weight. 
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The GO EQUIGENOM is a project funded by Spanish Ministry of Agriculture, Fisheries 
and Food funds, which involves the development of an optimized medium density array 
for parentage control, disease diagnosis, detection of traits of economic importance 
and dedicated to research and development in equine genomics, specifically focused 
on the Pura Raza Española Horse (PRE) and other genetically related breeds. 
The design of this chip has been structured in several phases, currently in the last 
phase, validation in an independent PRE population. Firstly, various GWAS analyses 
were carried out to search for molecular markers associated with diseases of great 
importance for the PRE. In this sense, using information from animals diagnosed and 
genotyped with a HD array (867 animals) or MD array (738 animals) and sequenced 
(284 animals), 257 markers were selected. Subsequently, an exhaustive search for all 
genetic markers associated with equine diseases described in the bibliography, and in 
international databases such as OMIA, or Ensembl genome browser was carried out. 
To this search, markers related to other traits of economic importance, 1,240 markers 
have been found.

Second phase, a reference population was selected for imputation analysis to the 
currently available HD and MD array. For this purpose, a selection of 4,490 representative 
animals (1,907 males and 2,583 females) belonging to 1,718 studs has been made, 
based on the maximum variability available in this breed and the maximum effective 
contribution to increase the reliability of the assessments in the evaluations (greater 
number of offspring in performance control of the different selection objectives of this 
breed). Genotyping of these animals in HD (2,359) and MD (1,781) allowed us to 
select 26,017 markers for imputation to HD (99.97 % imputation) and 15,705 markers 
for imputation to MD (99.96 % imputation). Based on this information, a selection of 
markers with MAF ≥ 0.4 was carried out to fine-tune the genomic selection. Our results 
have demonstrated the effectiveness of this methodology for improving the accuracy 
of genetic assessments, especially in traits such as morphology, and to a lesser extent 
in others such as reproductive efficiency.

Finally, a selection of markers has been made to distribute them homogeneously over 
all the chromosomes of the equine genome. To this end, priority was given to the quality 
of genotyping of these markers (based on the information generated with previously 
genotyped animals) and their informative power in genomic assessment (maximum 
MAF). In the final design, there are 90,938 markers with an average distance of 26 k. 
Furthermore, 1,165 ECAY and 1,000 mitochondrial markers selected thanks to the 
300 sequenced PRE animals have been included.

Abstract
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Once developed, the chip must be validated to ensure its efficacy and accuracy in 
the identification and evaluation of genetic markers associated with phenotypic traits 
of interest, such as morphology, sport performance and health. Final objective of the 
project is to integrate the information obtained through this MD array into existing 
selection programs for the PRE using an ssBLUP genomic assessment strategy, to 
improve the efficiency and accuracy of the selection of breeding stock. 

Keywords: SNP, horses, genetic markers, genomic selection, equine.  
Presented at the ICAR Anual Conference 2024 in Bled at the Session 9: Genomic’s 
impact on Livestock Sustainability 

The Pura Raza Española (PRE) horse is a native Spanish equine breed that has been 
officially recognized since the 15th century. Actually, the PRE is the most popular 
equine breed in Spain, representing the 70% of all registered equids. The total PRE 
population, 282,066 horses, are mainly located in Spain but also in other 67 countries 
(ANCCE, 2024). Recently, the Ministry of Agriculture, Fisheries and Food has awarded 
the innovative project GO EQUIGENOM to a consortium led by ANCCE and the Royal 
Spanish Federation of Selected Cattle (RFEAGAS), involving researchers from the 
PAIDI Group AGR-273 of the University of Seville, and AGR-158 of the University of 
Cordoba.

The aim of the project is to develop an economic medium density (MD) genotyping 
chip for the equine species, which simultaneously enables parentage control, the early 
diagnosis of hereditary and chromosomal diseases, the detection of economically 
important traits (coat colour markers, or those related to sporting ability, among others) 
and the development of genomic selection. Additionally, it will be complemented with 
the development of a robust and easy to use digital tool, which integrates the genetic 
information (from the breeding programme) and/or genomic information (generated 
by the chip) of each animal, allowing its use in a quick and easy to interpret way for 
the technician and for the breeder, in order to make breeding decisions, as well as 
the detection and control of hereditary diseases, avoiding a considerable economic 
expense and anticipating future problems and economic losses; with the consequent 
economic benefit for the farm. 

The results of the project will have a direct impact, firstly, on the PRE breed, but also 
on the whole equine sector, both nationally and internationally.

In total, 4,490 representative animals (1,907 males and 2,583 females) belonging to 
1,718 studs were selected for genotyping, based on retained the maximum variability 
available in this breed and the maximum effective contribution to increase the reliability 
of the assessments in the evaluations (greater number of offspring in performance 
control of the different selection objectives of this breed).

Genomic DNA was isolated from blood or hair samples using a DNeasy Blood and 
Tissue extraction kit (Qiagen, Germantown, MD, USA). 2,359 horses were genotyped 
with the high density (HD) Affymetrix AxiomTM Equine 670K SNP Genotyping Array 
(Thermofisher, Spain), including 670,804 markers uniformly distributed across the entire 
genome (Schaefer et al., 2017). The raw genotype data were processed following the 
‘‘Best Practices Workflow” procedure in the Axiom Analysis Suite package v5.0 with 
default parameter (DishQC ≥ 0.82). In the same way, 1,781 horses were genotyping 
with medium density (MD) GGP Equine Array (NEOGEN), including 70K SNPs 
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distributed across the entire genome. The raw genotypic data were filtered using 
PLINK v1.9 software (Purcell et al., 2007). Only SNP markers showing a high‑quality 
genotyping rate (call-rate >0.95), with a known genomic position located on the 
autosomes, mitochondrial and sexual chromosomes (XY) were kept. 

Finally, 284 individuals were completely sequenced with a minimum depth of 4X. 144 of 
the samples were sent to NEOGEN Genomics (Lincoln, NE, USA) and 140 were sent 
to Psomagen, Inc. (Rockville, MD, USA) to the sequencing on the Illumina NovaSeq 
6000 platform (Illumina Inc., San Diego, CA, USA). After filtering by quality, the 
adapters were removed with the fastp software. The remaining high-quality sequences 
were aligned with the Equus Caballus v.3.0 (to obtain the ECA1 to ECA31, ECAX 
and mitochondrial sequences) and MH341179 (to obtain the ECAY sequence) using 
the Burrows-Wheeler Aligner (BWA) software. Variants from the ECA1 to ECA31, 
ECAX and mitochondrial chromosomes were called from the Equus Caballus v.3.0 
reference genome while the variants from the ECAY chromosome were called from 
the MH341179 reference sequence. After variant calling (27.76M), SNPs were filtered 
out with a MAF < 0.2 and individuals which missingness was greater than 30% using 
PLINK v1.9. 1.6M variants were kept for whole-genome association analysis and 
population-based linkage analysis.

A reference population of animals genotyped at high density (2,359) and medium 
density (1,781) were used to select the markers that best imputed at high and medium 
density. Imputation and phasing were carried out using the Beagle 5.4 software 
(Browning et al., 2018; Browning et al., 2021). All SNPs (default) and genotype 
probabilities > 0.85, 0.90, and 0.95 were considered for imputed genotype calls. The 
accuracy of imputation was calculated by the ratio of true and imputed genotypes and 
the presence of missing and non-missing SNPs in the imputed population.

An exhaustive search for all genetic markers (SNPs, CNV, Indel...) associated with 
traits of economic importance such as diseases, coat colour and control parentage 
described in the bibliography, and in international databases such as OMIA, Ensembl 
genome browser, ISAG etc. was carried out.

For the final selection of the markers to be included in the array, a chromosome-to-
chromosome simulation was performed trying to provide an average distance of 26k 
between markers and had a maximum genotyping quality. The genotyping quality was 
determined by Thermofisher according to internal parameters and empirical results, 
as well as by the type of allele detected.

A total of 1,240 markers were selected from the literature and published international 
databases for different traits of economic importance for the horse such as diseases, 
behaviour, sport performance, coat colour… 

Imputation analysis

Bibliographic search 
for genomic markers 
associated with 
traits of economic 
importance 

Final chip design

Results and 
discussion

SNPs and traits of 
economic importance 
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Genotyping HD (2,359) and MD (1,781) animals allowed us to select 26,017 SNPs 
markers for HD imputation (99.97% imputation) and 15,705 markers for MD imputation 
(99.96% imputation).. 

The number of filler markers was 45,263 SNPs. The total number of markers included 
in the final design was 90,938 SNP. 

The authors would like to thank the Royal National Association of Spanish Horse 
Breeders (ANCCE) for providing the data used in this study. This work has been financed 
with FEADER funds by the EQUIGENOM Operational Group (Ministry of Agriculture, 
Fisheries and Food, through the Spanish Agrarian Guarantee Fund, FEGA).
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Digitalization is advancing with rapid developments in farm technologies, which has the 
potential to revolutionize dairy production and to improve its long-term sustainability. 
Farmers are increasingly using sensors and other technologies that monitor various 
parameters on their farms. Large amounts of data are collected, but just a small fraction 
is currently used along the dairy value chain. This has motivated the International 
Committee of Animal Recording (ICAR) and the International Dairy Federation (IDF) 
to start a joint initiative aiming at providing guidelines and best practices for using data 
from sensors across systems and applications, with a focus on functional traits such as 
health and animal welfare. The key partners are the ICAR Functional Traits Working 
Group and the IDF Standing Committee of Animal Health and Welfare who have 
formed a network of representatives from various stakeholders and leading scientists. 
Research and approaches to improve the usability of data are discussed to promote 
knowledge transfer and practical implementation in the dairy industry. Experiences 
and best practices are exchanged, and recommendations for the use of sensor data 
are being elaborated. The results will be broadly disseminated through ICAR and IDF 
avenues. Furthermore, the collaboration among multidisciplinary experts is enabling a 
holistic approach to the current challenges faced by the worldwide dairy industry and 
will facilitate cutting-edge research and innovation. The initiative will be presented, with 

Abstract

*This work was also presented at the EAAP2024 and ECPLF2024 conferences. The original publication 
of the following text is within the proceedings of the ECPLF 2024 Conference.
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a progress report on reference standards, harmonized definitions, and terminology, 
as well as recommendations and best practices regarding data cleaning and editing 
and definition of novel traits using data from sensor technologies in herd management 
and genetic evaluations.

Keywords: interdisciplinary network, wearable sensor, animal welfare, animal health, 
rumination, standardisation, precision dairy, smart farming. 
Presented at the ICAR Anual Conference 2024 in Bled at the Session 10: New 
approaches in the field of functional traits for management and breeding

Recent advancements in sensor technologies have significantly enhanced the 
capacity to technically support farmers and their advisors in monitoring the health, 
performance, and welfare of dairy cattle. As presented in the systematic review by 
Stygar et al. (2021) and in other focused reviews (e.g., Hogeveen et al., 2021), a 
wide range of commercially available sensor systems exists and promise significant 
gains in the understanding and improvement of welfare in livestock. The technologies 
cover the spectrum from wearable devices with multiple functions (e.g., tracking of 
physiological parameters) to environmental sensors that monitor housing and climatic 
conditions, and collectively aim to provide actionable information about animal health, 
reproductive status and well-being.  Most wearable sensors rely on 3D accelerometers, 
which measure acceleration or motion to quantify cow behaviour. Manufacturers 
use algorithms and pattern recognition to enhance the raw accelerometer data and 
produce sensor systems which recognize rumination, eating, lying, standing, and 
other behaviours using the data from sensors on the cow’s leg, neck, ear, or tail.  The 
integration of sensor systems in livestock farming presents numerous opportunities to 
enhance animal health, performance and welfare, supporting farmer decision making 
on individual cow and group level and farm efficiency. However, while large amounts 
of sensor data are being collected, only a small fraction is currently used on farms, in 
genetic evaluation and breeding programs, or along the dairy value chain. To maximise 
the use and potential of data derived from sensor systems for herd health, production 
management, genetic and genomic selection, and welfare quality assurance programs, 
we need to address several challenges. Combinating sensor-derived data with routinely 
recorded data may be a key factor for more confidence in the use of data from advanced 
technologies and sensor-based herd management systems among stakeholders, 
including farmers, consultants, authorities, dairy processors, breeding companies, 
and consumers. The currently low fraction of commercially available sensor systems 
with independent validation (14%; Stygar et al. 2021) shows the clear need for more 
extensive validation of sensor systems in diverse farming environments, across different 
farm and management systems and geographical locations. Comparing different sensor 
systems poses a significant challenge due to the lack of standardized and agreed on 
criteria for evaluation and validation.  

This has motivated the International Committee of Animal Recording (ICAR) and the 
International Dairy Federation (IDF) to start a joint initiative aiming at improved usability 
of data across sensor systems and applications. The initiative leaders are the ICAR 
Functional Traits Working Group (ICAR FTWG) and the IDF Standing Committee of 
Animal Health and Welfare (IDF SCAHW) in collaboration with international experts from 
academia and industry organizations. The primary aim of this initiative is to promote 
the integrated use of sensor data and derived novel traits along the dairy value chain. 
Standardisation and harmonisation will be supported through guidelines that include 
basic definitions and recommendations regarding data processing and use. Topics 
addressed include reference methods, data cleaning and validation, trait definitions for 
herd management and selective breeding, genetic improvement, and quality assurance. 

This paper’s main objective is to present the methods and working strategies that the 
joint initiative will use to achieve its aim, using rumination as a case study. 

Introduction
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With the increasing adoption of sensor systems in dairy farming, the number of 
different technologies provided by different manufacturers has increased. While the 
diversity offers farmers the opportunity to choose a system that best suits their own 
farming set-up, it has increased the variation in type of measurements, type of data 
generated, algorithms, sensor output, attention lists and monitoring key performance 
indicators. This poses challenges to advisors, researchers and other stakeholders 
when interpreting sensor outputs across technologies and brands and comparing herd 
performance. The joint ICAR/IDF initiative will provide definitions for health or behaviour 
situations and conditions that can be measured by sensor systems. Those definitions 
will be based on the primary premise that the condition of interest should be detected 
or quantified irrespective of the applied technologies and with a level of accuracy that 
enables users to make meaningful decisions based on the supplied information. To 
promote the use of data from sensor technologies along the dairy value chain, the 
collection and use of reliable data is key, emphasizing the need for validation or at 
least documentation of the performance against a reference standard, i.e. to show that 
the technology measures what it is supposed to measure. Agreement on a reference 
standard method is crucial as is common understanding on how to perform comparisons 
and report results. Furthermore, establishing a minimum level of accuracy might be 
helpful. Irrespective of the use of sensor data (management support, research, genetic 
evaluation), the processes of validation and standardization are key to ensuring that 
the data collected from diverse sources are comparable, reliable, and usable.

While developing these standards and recommendations we chose a participatory 
approach to address stakeholder concerns such as intellectual property considerations 
and achieve a common understanding with manufacturers. If, for instance, a product 
is offered as rumination sensor, the output should be easy understandable and reflect 
the actual rumination behaviour of a cow.

Harmonized terminology is fundamental to the standardization process, which 
comprises the development of common definitions and descriptions. The very positive 
experiences with the ICAR Claw Health Atlas (ICAR, 2020), presenting different lesions 
in the distal limb of bovine with harmonized names and descriptions, illustrates the 
potential for success of the current initiative on sensor data relating to health and 
welfare of cattle, with first results to be expected for rumination. The IDF action team 
on sensor-based health management recently published guidance for udder health 
management with sensor systems (Hogeveen et al, 2021). ICAR and IDF have 
experience in leading the standardization efforts with strong engagement to provide 
the crucial framework and promote a more integrated and forward-thinking approach 
to dairy farming technology.

Achieving agreement on a ‘gold standard’ which is appropriate across measurement 
approaches, is difficult for a biological phenomenon such as rumination where 
interactions and influences on its expression must be considered (e.g., farm 
environment, nutritional input, other management factors). In this case, rumination 
time may be the most suitable biological parameter to allow quality assessment and 
comparison of sensor outputs for the rumination process. Here, knowledge on the 
major sources of variability in rumination time (which include diet composition, breed, 
and health status) exists and facilitates defining standard criteria and conditions for 
validation. The target for a rumination sensor may be, for example, a correlation of 80% 
between sensor-recorded rumination time and the visually recorded rumination time in 
healthy cows of a given breed on a given diet. Because certain layers of complexity or 
specific sources of variability across herds and animals may or may not be accessible in 
any environment, reference standards need to be adaptable and robust enough to cope 
with that. A deep understanding of animal physiology and behaviour within the range 
of farming settings, is needed to establish baselines and thresholds for deviations that 
are both scientifically valid and practically applicable across diverse farming conditions.

Definitions and 
reference methods

https://www.icar.org/ICAR_Claw_Health_Atlas.pdf
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Such agreed references and standards are indispensable for the validation and 
calibration of sensor outputs, because they help to ensure that accurate and actionable 
data is used across the dairy value chain, that products and services within the 
industry are comparable, and uniform approaches to data interpretation and decision-
making can be used. Thus, the efforts of ICAR and IDF to harmonize definitions and 
develop industry-wide standards and guidelines are not merely procedural but are 
vital for the advancement and sustainability of dairy production on a global scale. The 
interdisciplinary approach and wider exchange with stakeholders will contribute to 
acceptance and adoption of standards despite the operational challenges which may 
be substantial. ICAR is offering tests for milk (recording) devices according to agreed 
standards, which are described in the ICAR guidelines (www.icar.org). Devices that pass 
such test receive an ICAR certificate. One of the aims of this initiative is to elaborate 
and recommend options for validation of sensor systems. 

Sensor data can be noisy, and the output variables that are presented are the result 
of the use of an algorithm that transforms raw sensor values into variables such as 
rumination time or activity level. Typical errors in sensor data include outliers, missing 
data, bias, drift, noise, constant value, uncertainty, and stuck-at-zero conditions (Teh et 
al, 2020). Examples for cleaning sensor data can be found in Schodl et al (2022). Proper 
data integration and interpretation is dependent on reliable assignment of records to 
individual animals and on coordination of times of recording. Furthermore, whenever 
working with sensor data, it must be considered that the processes used for cleaning, 
procedures and transformation of raw sensor data into variables such as rumination 
time or activity values are usually proprietary to the sensor companies, which means 
that these procedures cannot normally be shared or used by others. Analyses of data 
structure and quality require an understanding of the type of measurements, i.e. single-
shot measurement at a certain point in time versus already summarized or averaged 
figure (Bouchon et al, 2019). Visualisation of the data is helpful in understanding the 
type of distribution, patterns, gaps, outliers, etc. (Unwin, 2020). Detecting and removing 
outliers is a very important step in the data cleaning process. Another important aspect 
is the detection of technology -related noise such as measurement drift (Giannoni et al, 
2018; Munirathinam 2021). The same is the case for sensor calibrations or replacement 
and software updates and ideally this information should be available from the sensor 
companies. Finally, all data cleaning steps should be documented and reported. The 
integration and availability of other data sources (calving date, breed, events like in 
heat etc.) is beneficial for data cleaning and validation. 

Rumination behaviour data from sensors has been used successfully on working dairies 
around the world, implying availability of mature technology with proven results across 
multiple manufacturers. Changes in rumination are linked to feed intake, and a reduction 
may indicate health issues (including metabolic and non-metabolic disorders, like 
mastitis or pneumonia). Identification of drops in rumination can help identify individual 
cows which require manager or veterinary intervention. Especially in early lactation, 
monitoring of rumination patterns is of high value for timely disease detection and 
proper intervention and treatment. At the group level, rumination data is a useful tool 
to monitor and manage feeding during the lactation or to identify stressful situations 
in the herd. The particular value of rumination data from early lactation is obvious due 
to the increased risk of metabolic diseases. Early identification of affected cows can 
facilitate a successful intervention through therapeutic treatment. Whereas research 
often focuses on the sensitivity and specificity of sensor-based alerts for identifying 

Data cleaning and 
quality of sensor data

Use of sensor 
technology for herd 
management and 
welfare assurance
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disease, high false positive rates (where unaffected animals are identified as a positive 
case) may have practical benefits in larger operations through reducing labor costs.

As rumination decreases around the time of an estrus event, the accuracy of estrus 
detection can be improved by including rumination data. In general, sensor-based 
alerts rely on deviations from each individual cow’s baseline. Thus, consistency 
within a technology from the farmer’s perspective may be at least as important, 
or even more important than the relationship to a ‘gold standard’. However, direct 
comparisons of rumination times across technologies can lead to false conclusions. 
Studies with multiple rumination technologies attached to the same cows have shown 
that differences in rumination time across technologies can be large (Zambelis et al., 
2019). Guidelines, video tutorials and protocols for visual assessment of rumination 
are available and support collection of observation data.

To date, sensor technologies are rarely used for welfare assessment in quality 
schemes (Stygar et al, 2022). However, research efforts have been made to develop 
algorithms which classify dairy cow welfare into good, moderate, and poor using data 
from various sensors (Stygar et al, 2023). Standardization of rumination definitions 
across manufacturers is necessary for the development of a global welfare assessment 
algorithm from a technical point of view.  Common implementation practices will also 
be beneficial in terms of reducing the cost of sensor-based welfare assessment.

However, wider use of the rumination data as for welfare quality programmes, breeding 
purposes require interoperability of data from various sensor systems, such that 
definition of the rumination trait(s) can be performed across data sources. Agreement 
on standards and common definitions is prerequisite.

The large number of variables recorded by sensor technologies can be integrated with 
routinely collected variables for deriving novel welfare indicators for management and 
breeding purposes (Brito et al., 2020). Ideally, the derived traits should capture the 
biological mechanisms of interest, be heritable and repeatable, and be clearly defined 
and evaluated in a standard way across breeding programs. After identifying the 
variables of interest (e.g., rumination time), statistical models need to be developed for 
the genetic analyses. Modelling systematic effects (e.g., parity, lactation stage, herd, 
season, diet, reproductive stage, housing time) that significantly influence the target trait 
is enabled by integrating sensor data into the established data infrastructure for dairy 
cattle. Comprehensive genetic analyses of the target trait(s) and possible correlated 
traits provide the genetic parameters for setting up genetic and genomic evaluations: 
additive genetic (co)variances, heritability, repeatability, genetic correlations. In the 
context of sensor-based measures of health and welfare, multiple trait analyses may 
include, e.g., direct health traits, feed efficiency, methane emissions, milk production 
and composition, productive life, reproductive performance. Additional genome-
wide association studies and functional genomic analyses can contribute to better 
understanding the genomic background of the target trait.

Functional traits are integral parts of the breeding goals and breeding programs of dairy 
cattle. However, the main challenge for health- and welfare-related traits is the often 
limited availability of phenotypic data (e.g., veterinary diagnoses, farmer observations, 
records from hoof trimming) and mostly low heritabilities. The continuous data collection 
provided by sensor technologies offer new possibilities for multiple trait solutions 
with the potential for integrated data usage in future genetic evaluation routines. Key 
challenges to be overcome include access to data, protocols for integrating data from 
different data sources, many different data providers, tools with different information 
from different data providers and different resolution of the information, a lack of 
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background information on the data, regular updates with respective needs to adjust 
the data pipelines for genetic analyses, and the large amount of data (Egger-Danner 
et al. 2022).

However, research on the use of sensor data for breeding is ongoing, with publications 
on fertility (Heringstad and Wethal, 2023), resilience traits (Poppe et al. 2022) and 
others. With regards to rumination, focus has been mainly on ‘Rumination Time 
(RT; min/day)’ which represents the time per day a cow spends ruminating. Derived 
variables that have been proposed include daily average RT, 2-hour averages of 
RT (Hut et al., 2022), changes in RT during specific time periods as well as trait 
definitions based on deviations and more recently, longitudinal measurements of RT 
have been suggested as measure of overall resilience. For RT, heritability estimates 
of 0.14 ‑ 0.45 have been reported (Byskov et al., 2017; Lopes et al., 2022).  Future 
research will show whether breeding and management purposes will benefit from 
combined use of several sensor-derived traits (e.g., rumination together with activity).

Both ICAR and IDF see great benefit in providing standards and recommendations 
for the use of sensor data to improve cow health and welfare to the benefit of farmers, 
manufacturers, dairy herd improvement and breeding organizations, consultants, 
researchers, dairy processors and consumers. Leveraging the synergies of both 
organizations will facilitate communication, collaboration between stakeholders and 
implementation along the dairy chain, e.g. herd management, breeding and welfare 
quality assurance programs. A participatory approach involving researchers and 
industry is key to understanding the interests, needs, concerns, and expertise of different 
stakeholders and develop standards that would benefit all. Expanding our discussion 
to all stakeholders will bring together the different aspects and approaches, lessons 
learned and recommendations. The aim is to develop harmonized definitions and 
terminology that are feasible, acceptable, beneficial, and implementable for the different 
stakeholders. Improving the quality and comparability of data will encourage use beyond 
current applications and the development of more accurate tools, thereby contributing 
to increased sustainability through productivity and economic performance, improved 
animal health and welfare, and better use of resources and reduced environmental 
footprint.

The authors would like to thank all colleagues, scientists, manufacturers, representatives 
from ICAR member and other stakeholder organisations for their fruitful discussions and 
contributions. Special thanks to Steven Sievert from the ICAR Measuring, Recording 
and Sampling Devices Sub Committee and Robert Fourdraine from the ICAR Animal 
Data Exchange Working Group.
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Large and varied datasets from modern precision livestock farming equipment can be 
used to tackle increasingly complex research questions such as defining a phenotype 
of heat stress resistance in dairy cattle milk production. Heat stress causes drops in 
production and changes in behavior that are difficult to detect unless the cow in question 
is monitored over longer periods and more variable conditions than conventional 
experimental designs may allow. We present here how the SLU Infrastructure for 
dairy data collection, Gigacow support complex data-driven dairy research using heat 
stress as a case study. SLU Gigacow gathers daily data updates from a set of Swedish 
commercial dairy farms with a digital farm management system (FMS) overseeing 
either a robot milking system or milking parlor, and links the data per-cow to individual 
50k SNP genotypes and national animal database information including trade history, 
pedigree and health events. The way SLU Gigacow support the project From Sensitive 
to Robust Athlete – Exploring the Opportunities of Genomic Selection to Help Dairy 
Cows Cope With Increasing Temperatures provides a good case study on how the 
data and knowledge generated by:

•		  Validating an external dataset from the Swedish Meteorological and Hydrological 
Institute.

•		  Collecting daily milking data from farms over multiple lactations.

•		  Providing cost coverage to Gigacow farms for genome analysis services and 
collect genetic data generated from the genome analysis in collaboration with 
Växa Sverige and Nordic Cattle Genetic Evaluation.

•		  Continuously evaluating, and including new data analysis models to support 
researchers and ensure that lessons learned in different projects can be included 
in new studies.

The collection of high quality longitudinal datasets was a key motivation for the 
establishment of SLU Gigacow and the infrastructure actively tries to prioritise data 
collection efforts to support future research and industry needs.

Keywords: data collection, infrastructure, heat stress. 
Presented at the ICAR Anual Conference 2024 in Bled at the Session 10: New 
approaches in the field of functional traits for management and breeding.
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As the digital transformation of society progress it is apparent that agricultural research 
institutions must adapt and ensure that a mixture of competency in data science and 
agriculture is maintained within the organization. The rapid pace of development also 
makes it difficult for researchers to keep up to date on new technology or data sources 
becoming available. Researchers affiliated with a data collection infrastructure can 
therefore have an important role in evaluating technology and ensuring that colleagues 
have access to new technologies to generate data for their research.

The SLU Infrastructure for dairy data collection, Gigacow (SLU Gigacow) is a data 
collection infrastructure at the Swedish University for Agricultural Sciences previously 
presented at ICAR 2023 (Ohlsson et al. 2023). The infrastructure collect data from a wide 
variety of sources and its role in the project From Sensitive to Robust AthleteExploring 
the Opportunities of Genomic Selection to Help Dairy Cows Cope With Increasing 
Temperatures provide an example of how a data collection infrastructure can support 
dairy research.

Working with a data-driven approach to develop a research infrastructure requires 
both patience and trust as the start-up process of a general data platform require more 
time and consideration than ad-hoc data collection for a single project. Looking at 
the Strengths, Weaknesses, Opportunities and Threats to the Gigacow infrastructure 
highlights the following table: 

 

 
Strengths Opportunities 
Reduced technical overhead in projects Integration of new data sources 
Continuous improvement of data collection Standardised APIs make big data accessible 
Provides a platform for development Support research on data models 
Can integrate results in multiple projects Systematic gap-analysis for new technologies 
Threats Weaknesses 
Slow start before first results are generated Prioritisation of data sources 
Little funding for indefinite projects Lack of data specialists in agriculture 
Risk of obsolescence False negatives are hard to detect 

 
 
  
The project application was written in the early spring of 2022 and funding began on 
1 January 2023, data collection from the project however began already in 2020 as 
climate change and warming was identified as an area where researchers at SLU 
where likely to wish to use SLU Gigacow. In Sweden (Figure 1)

In this project data from the herd management system of farms participating in the 
SLU Gigacow network is combined with genotypes from the Nordic Cattle Genetic 
Evaluation and meteorological analysis data collected from the open data collection 
of the Swedish Meteorological and Hydrological Institute (SMHI).

To evaluate the need for on-farm temperature sensors SLU Gigacow has 
cross‑referenced the Mesoscale Analysis (MESAN) model from the Swedish 
Meteorological and Hydrological Institute (SMHI) with historical measurements from 
SLU Lantmet, which collates climate data from weather stations distributed across 
the country. The MESAN model interpolates climate data from SMHI’s national 
network of weather stations to model conditions across Sweden on a 11x11 km grid.  
Measurements from MESAN on temperature and humidity were deemed to be of 
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sufficient quality while wind and precipitation could differ significantly when comparing 
on-site measurements with the MESAN model. MESAN model temperatures from each 
farm’s matching grid square was therefore used to infer the Temperature-Humidity 
index at each farm in the project.

Strengths

•	 Faster per project

•	 Continuous improvements to data collection

•	 Provides a platform for development

•	 Provide an integration platform.

Opportunities

•	 Integration of new data sources

•	 API:s “only” legal issues limit data.

•	 Methods development

•	 Gap analysis

•	 Model building.

Figure 1. Timeline of the project and SLU Gigacow.

 

 

 

 
Figure 1. Timeline of the project and SLU Gigacow. 
 

Threats

•	 Slow start

•	 Long term funding

•	 Obsolesence

Weaknesses

•	 Prioritisation

•	 Recruiting

•	 Missing data

•	 Dedicated staff

•	 Data separation in “data lakes”
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Performance recording and phenotyping of beef cattle are on the verge of a new 
era. Indeed, Bruyas et al. (2023) have recently shown that it is possible to collect 
three-dimensional images of beef calves at weaning using a 3D device suitable for 
high-throughput phenotyping and to automatically extract morphological parameters 
(heights, widths, volumes, surfaces, etc.). The aim of this new study, which is part 
of the PHENO3D project, was to develop models based on artificial intelligence to 
estimate Body Weight (BW) and morphological linear scores based on previously 
estimated body measurements. To achieve these objectives, 1194 Charolais calves 
aged 4 to 12 months and weighing from 90 to 620 kg were scanned on 14 commercial 
farms. Most of them were scanned twice, allowing a total of 2210 3D images to be 
acquired. Reference measurements were collected on these same animals: each calf 
was weighed on an electronic scale (BW) and scored by 3 experienced technicians. 
Scoring resulted in the estimation of 10 elementary scores, which then allowed for 
the calculation of 2 synthetic scores (ratings from 1 to 100) used ultimately for genetic 
selection: 1. the muscular conformation (MUS), relating to the musculature of the animal 
and 2. the size (SKE) of the animal relating to skeletal development. To predict BW, 
MUS, and SKE, various Machine Learning (ML) algorithms such as Extreme Gradient 
Boosting, Random Forest, and Elastic Net Regression were trained using 70% of the 
images and tested on the remaining 30%. The models were evaluated using Mean 
Absolute Error (MAE) and Spearman’s correlation (rs). The repeatability of predictions 
was also assessed by Spearman’s correlation between estimates made for the 1st 
image and the 2nd (when available). For BW, 1462 images were used for the learning 
model and 356 images for testing. For the best model, BW was predicted with a rs of 
0.97 and an MAE of 12.1 kg (4.2%). The repeatability rs was 0.98 between the two 
images. For MUS and SKE, 1267 images were used to train the model and 308 images 
for testing. For the best model, MUS and SKE were predicted with respective rs values 
of 0.78 and 0.75, and MAEs of 7.1 (14.5%) and 6.5 (11.9%). The repeatability rs for 
these predictions for MUS and SKE were respectively 0.81 and 0.87. The Spearman’s 
correlation for prediction and repeatability of MUS and SKE were higher than the 
average results obtained by experienced scorers during annual certification sessions. 
These results show that automating the scoring process using a 3D scanner combined 
with ML models is possible and allows for more accurate and repeatable estimates than 
those obtained by long-term scorers. The performances achieved on the Charolaise 
breed allow us to consider multiplying our models on the 9 other beef cattle breeds 
scored today (Limousine, Blonde d’Aquitaine, Salers, Aubrac, Parthenaise, Rouge des 
Prés, Blanc Bleu, Gasconne des Pyrénées, and Bazadaise) and to project towards 
the industrialization of the PHENO3D solution. 
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In the French beef cattle sector, genetic selection heavily relies on the monitoring and 
phenotyping of a diverse animal population (Griffon et al., 2017). This crucial process 
for breeding organizations, is predominantly conducted through a network of affiliated 
farmers and involves initial phenotyping usually conducted around the calves weaning. 
Technicians from either the Eliance network or breeding organizations of the Races 
de France network undertake on-farm data collection, encompassing animal weighing 
and morphological traits assessment. The morphological evaluation encompasses 
19 scores, evaluating both muscular and skeletal development, as well as functional 
traits. Trained technicians visually perform this linear scoring, following the detailed 
methodology outlined by Lajudie et al. (2014) (Section 3 - ICAR Guidelines for Beef 
Cattle Production Recording). Despite the effectiveness of visual scoring, it requires 
extensive training and is susceptible to subjective biases. Hence, there is a pressing 
need in the beef sector to automate scoring processes to reduce training costs and 
minimize the impact of human biases on measurements.

To tackle these challenges and modernize the phenotyping process, the PHENO3D 
project was launched, representing a collaboration between Eliance (the French 
federation of breeding advising and service companies), Races de France (French 
federation of breeding organizations), and Idele (the French Livestock Institute). The 
project aims to harness 3D imaging technology and artificial intelligence to streamline 
phenotyping by automating weight measurement and morphological scoring of beef 
calves (Bruyas et al., 2022). An initial milestone of PHENO3D involved the development 
of a 3D scanning device capable of accurately capturing the three-dimensional profiles of 
weaning-age beef calves and extracting relevant morphological data from these images. 
The validation of this technology, following a methodology similar to that described by 
Le Cozler et al. (2019), compared live animal measurements with those derived from 
3D images, yielding promising results (Bruyas et al., 2023). This successful validation 
marked a significant advancement, reinforcing the project’s trajectory and paving the 
way for subsequent phases of development and implementation.

The 3D scanner utilized in this investigation was previously detailed by Bruyas et al. 
(2022). It comprises a modular gantry with dimensions of 3 x 2.5 x 0.7 meters and 
incorporates ten depth sensors (see figure 1a). These sensors synchronize their data 
acquisition processes to produce comprehensive 3D images of the entire body of beef 
calves. Animals are scanned while in motion, passing beneath the device by walking 
or trotting, thereby enabling high throughput phenotyping. Integrated algorithms 
automatically enhance the images, streamlining the process for immediate image 
analysis. Through preprocessing and new feature extraction techniques, hundreds 
of indicators are automatically extracted to estimate body traits from 3D images. The 
developed methodology facilitates the automatic extraction of key body traits (Do et al., 
2024), such as hip width (HW), chest depth (CD), wither height (WH), sacrum height 
(SH), body volume (BV), body surface (BS), and other measurements across numerous 
body slices (see figure 1b). All these body measurements were subsequently utilized 
to construct the prediction models developed in this investigation.
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To conduct our study, we scanned a total of 1194 Charolais calves, aged 4 to 12 months, 
and ranging in weight from 90 to 778 kg, across 14 commercial farms. Most of these 
calves underwent two scans, resulting in a total of 2210 3D images. All captured images 
were securely stored in the Microsoft Azure cloud platform.

Concurrently, reference measurements were obtained from these same animals: each 
calf was individually weighed on an electronic scale to determine its body weight (BW) 
and assessed by three experienced technicians. The visual scoring process led to 
the estimation of 10 elementary scores, each rated on a scale from 1 to 10, where a 
lower score indicates lower values and a higher score indicates higher values, based 
on frame and muscularity traits. The assessed traits are detailed in figure 2 below.

Figure 1. 3D scanner used for the trial (a) and automated image analysis (b).

 

  
Figure 1. 3D scanner used for the trial (a) and automated image analysis (b). 

 
  

a b 

Animals and 
reference data

Figure 2. Frame traits (blue) and muscularity traits (red) used for linear scoring.Figure 2. Frame traits (blue) and muscularity traits (red) used for linear scoring. 
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The details concerning the animals’ characteristics used for the trial are presented in 
table 1 below.

In our database, a total of 2210 3D images were initially available for analysis. However, 
after careful consideration, a subset of these images was excluded from the study due 
to factors impacting image quality and data reliability. These factors encompassed 
issues such as insufficient image clarity, inappropriate animal positioning during imaging 
(e.g.,  jumping or kicking), absence of duplicate images necessary for calculating 
repeatability, and errors in animal identification. The exclusion of these images was 
crucial to uphold the integrity of our study’s findings. Ultimately, we utilized 1818 images 
for predicting body weight (BW) and 1575 images for predicting muscle (MUS) and 
skeletal (SKE) development. For both predictions, the models were trained using 80% 
of the images and tested on the remaining 20%, ensuring no overlap between train 
and test sets.

For BW prediction, 173 features were initially extracted from the 3D images. To 
enhance predictive performance and reduce dataset dimensionality, we employed 

The 10 elementary scores were subsequently utilized to compute 2 synthetic scores, 
each rated on a scale from 1 to 100, which are ultimately employed for genetic selection 
purposes:

1. 	Muscle development (MUS), which pertains to the overall musculature of the animal.

2. 	Skeletal development (SKE), which relates to the body frame of the animal.

Figure 3 below displays images of calves exhibiting extreme morphologies for MUS 
and SKE. The four images depict calves of roughly the same age but with notable 
variations in size and muscularity.

Figure 3. 3D image examples of extreme morphologies for calves around 6 months age. 

                 
Figure 3. 3D image examples of extreme morphologies for calves around 6 months age. 

Image a shows calves scoring from SKE=14 (light grey) to SKE=94 (dark grey). Image b 
shows calves scoring from MUS=13 (light grey) to MUS=94 (dark grey). 
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Table 1. Animals characteristics.
 
Table 1. Animals characteristics. 
 

n=1194 Age Weight MUS SKE 
Average 221 287 56,2 59,1 
SD 61,2 80,1 15,1 14,1 
Min 44 130 10 12 
Max 559 568 95,7 94 
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the Recursive Feature Elimination (RFE) method. RFE iteratively eliminates the least 
important features from the dataset, resulting in 61 selected features after training on 
the Random Forest estimator.

Subsequently, four machine learning models (Extreme Gradient Boosting, Random 
Forest, SVM Linear, and Lasso Regression) were trained on 1462 images from the 
learning dataset. To mitigate overfitting, models underwent training using a 4-fold 
cross‑validation method with 5 repetitions. Following training, each model was evaluated 
on a test set comprising 356 images.

Similar methodologies were applied for predicting MUS and SKE synthetic scores. The 
RFE algorithm was used to select the most important features, resulting in 16 features 
for SKE score prediction and 51 features for MUS score prediction. The same four 
algorithms were trained on 1208 images using a 4-fold cross-validation method, 
repeated 5 times, and evaluated on a test set of 367 images.

Model evaluation metrics included Mean Absolute Error (MAE), Root Mean Squared 
Error (RMSE), and Spearman correlation (rs). Additionally, the repeatability of 
predictions was assessed by calculating the Spearman correlation between estimates 
from duplicate images when available. 

Table 2 below illustrates the performance of the ML models. Among the models 
evaluated, Extreme Gradient Boosting emerged as the top performer in terms of 
predictive accuracy following feature selection. On the training set, BW was predicted 
with an RMSE of 15kg (5.2%) and a MAE of 11.3kg (4.0%). This resulted in a high 
correlation between BW and the model’s predictions, with a rs of 0.97 and an average 
R2 of 0.98.

The model’s performance remained consistent across both datasets, with an RMSE 
of 15.6kg (5.4%) and a MAE of 12.1kg (4.2%). This consistency suggests that our 
model has effectively captured the underlying data patterns without overfitting to the 
training set, enhancing its reliability for real-world applications.

While Random Forest (RF) also demonstrated competitive performance, it slightly 
trailed behind Extreme Gradient Boosting. These ensemble methods excel in capturing 
intricate data interactions. Interestingly, SVM Linear and Lasso regression, despite their 
reputation for excellence in prediction tasks, exhibited relatively lower performance in 
terms of MAE and RMSE.

Figure 4 illustrates the relationship between estimated weight and ground truth values 
for both the train and test sets. With an overall R2 of 0.964, predictions and actual 
weights are distributed around the line of perfect prediction. With such high-performance 
levels across both train and test sets, the model demonstrates exceptional accuracy 
and reliability in predicting weight, rendering it suitable for practical applications.

The model’s repeatability was assessed to confirm the consistency of BW predictions 
when different images of the same individual were provided. This was determined by 
calculating the Spearman correlation between two images of the same cattle when 
two 3D images were available. Our findings demonstrate a high level of repeatability 
of the model across two images of the same animal, with a rs of 0.98 for 738 cattle.

Results and 
discussion
Weight prediction
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Figure 5. Predictions vs reference MUS and SKE scores for training set (black) and test set (grey). The 
blue line indicates the optimal fitting

Figure 4. Predicted BW vs real BW for training set (black) and test set (grey). The blue line 
indicates the optimal fitting.

 
Figure 4: Predicted BW vs real BW for training set (black) and test set (grey). The blue line indicates 
the optimal fitting. 
 
  

 

 
 

Figure 5: Predictions vs reference MUS and SKE scores for training set (black) and test set (grey). 
The blue line indicates the optimal fitting 
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To predict the synthetic scores, we utilized a dataset comprising 1575 images, with 
predicted weight included as a predictive variable. Employing the same methodology, 
we trained models using a 4-fold cross-validation and evaluated their performance on 
the test set. The results across the entire dataset are presented in Table 2.

Both Random Forest and Extreme Gradient Boosting emerged as the top-performing 
algorithms. For SKE score predictions, Extreme Gradient Boosting exhibited greater 
precision, with an MAE of 6.2 (11.4%) and an RMSE of 7.7 (15.2%). Figure 5 illustrates 
the relationship between reference SKE and the predicted SKE of this model, with 
an R2 of 0.67 suggesting a correct linear relation between predictions and reference. 
Similar performances were observed in both the train and test sets, indicating 
good generalization of the model. To enhance this performance further, it may be 
advantageous to include a certain proportion of extreme SKE values, particularly 
those below 40, where the number of animals in our study is limited. Moreover, the 
model demonstrated good repeatability, with a rs of 0.87, significantly surpassing the 
repeatability target of 0.78.

For MUS score predictions, Extreme Gradient Boosting also emerged as the top model, 
achieving an MAE of 7.1 (14.5%) and an RMSE of 9.0 (21.6%). Figure 5 illustrates a 

Synthetic scores 
prediction

Table 2. Models’ performances on BW and synthetic scores prediction.

 

Table 2: models' performances on BW and synthetic scores prediction. 

 

 

Predicted 
traits 

Data 
sets 

    ML models 
 
Statistics 

Random 
Forest 

Extreme 
Gradient 
Boosting 

Lasso 
Regression 

SVM Linear 

BW Train 
data 
set 
n=1462 

MAE (kg) 11.7 11.3 12.9 12.8 
MAPE (%) 4.2% 4.0% 4.6% 4.6% 
RMSE (kg) 15.4 15.0 16.9 16.7 
rs 0.97 0.97 0.96 0.96 
R² 0.96 0.96 0.95 0.95 

Test 
data 
set 
n=356 

MAE (kg) 12.4 12.1 13.6 13.3 
MAPE (%) 4.3% 4.2% 4.7% 4.5% 
RMSE (kg) 16.2 15.6 17.7 17.7 
rs 0.97 0.98 0.97 0.97 
R² 0.96 0.97 0.95 0.95 

MUS Train 
data 
set 
n=1267 

MAE  7.6 7.1 7.6 7.6 
MAPE (%) 15.6% 14.5% 15.8% 15.5% 
RMSE  9.4 9.0 9.6 9.7 
rs 0.73 0.75 0.72 0.73 
R² 0.58 0.62 0.56 0.56 

Test 
data 
set 
n=308 

MAE  7.4 7.1 8.0 7.9 
MAPE (%) 15.5% 14.5% 16.9% 16.7% 
RMSE  9.4 9.1 10.0 10.0 
rs 0.77 0.78 0.74 0.74 
R² 0.64 0.65 0.58 0.58 

SKE Train 
data 
set 
n=1267 

MAE  6.3 6.1 7.2 7.2 
MAPE (%) 11.9% 11.3% 13.9% 14.0% 
RMSE  7.8 7.7 9.0 9.0 
rs 0.78 0.79 0.74 0.73 
R² 0.67 0.68 0.56 0.55 

Test 
data 
set 
n=308 

MAE  6.3 6.5 6.9 7.0 
MAPE (%) 11.3% 11.9% 12.9% 13.1% 
RMSE 7.7 8.0 8.5 8.5 
rs 0.78 0.75 0.76 0.75 
R² 0.69 0.67 0.62 0.62 
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strong correlation between predictions and references, with an R2 of 0.62 for the train 
set, 0.64 for the test set, and 0.62 across the entire dataset. Additionally, the model 
exhibited good repeatability, with a rs of 0.84, notably exceeding the repeatability 
target of 0.75.

In conclusion, this study underscores the feasibility of employing three-dimensional 
imaging in conjunction with artificial intelligence methods to accurately estimate body 
weight (BW) and linear scores in calves. By leveraging machine learning models, 
we achieved robust predictions for BW, muscle development (MUS), and skeletal 
development (SKE), surpassing the accuracy of experienced human scorers. The high 
repeatability of these predictions underscores the reliability of our approach, promising 
improved phenotypic assessment in livestock breeding programs..
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French Ministry of Agriculture and APIS-GENE for their generous funding support of 
the PHENO3D project.
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Hoof lesions are a significant issue in dairy herds, with a prevalence ranging from 40% 
to 70%. In Italy, hoof lesions are the second leading causes of culling cows, following 
fertility and reproductive disorders. Hoof health is also related to economic and social 
consequences, resulting in increased labour expenses, reducing milk production, 
longevity, fertility, health and welfare. Management practices and genetic selection 
are crucial for reducing hoof lesions in dairy cows.

Italian Holstein, Brown and Jersey Breeders Association (ANAFIBJ) in collaboration 
with a group of hoof-trimmers is collecting data on hoof lesions through the HappyFeet 
Project. Data are collected using an Android App developed by FA.MA Services (FA.MA 
Services, Milan (MI), Italy) and installed into a portable device (e.g., tablet) according 
to ICAR Atlas. A total of 18.826 hoof lesions records are stored into ANAFIBJ data-
base collected on 10.583 Italian Holstein lactating cows across 78 herds in Italy. Most 
frequent lesions are dermatitis (18%), sole ulcer (14%) and sole hemorrhage (9%). 
Further descriptive statistics related to hoof lesions prevalence are studied based on 
season, including year, semester, quarter and trimester as well as factors like parity 
and lactation stage.

The objectives of the HappyFeet Project are to streamline data from hoof-trimmers to 
database, to provide a benchmark reference both for farmers and hoof trimmers and 
to set up a genetic and/or genomic evaluation for hoof health.

Keywords: hoof lesions, data-collection, hoof health. 
Presented at the ICAR Anual Conference 2024 in Bled at the Session 10: New 
approaches in the field of functional traits for management and breeding

Hoof lesions are a significant issue in dairy herds, with a prevalence ranging from 40% 
to 70%. In Italy, hoof lesions are the second leading causes of culling cows, following 
fertility and reproductive disorders. Hoof health is also related to economic and social 
consequences, resulting in increased labour expenses, reducing milk production, 
longevity, fertility, health and welfare. Management practices and genetic selection 
are crucial for reducing hoof lesions in dairy cows.
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Italian Holstein, Brown and Jersey Breeders Association (ANAFIBJ) in collaboration 
with a group of hoof-trimmers is collecting data on hoof lesions through the HappyFeet 
Project. Data are collected using an Android App developed by FA.MA Services (FA.MA 
Services, Milan (MI), Italy) and installed into a portable device (e.g., tablet) according 
to ICAR Atlas. 

First data have been collected from September 2022 with a total of 380 visits in 99 Italian 
farms. 27.085 hoof lesions records are now available in ANAFIBJ database collected 
on 14.401 animals.

Descriptive statistics at National level related to hoof lesions prevalence based on 
season, including year, semester, quarter and trimester as well as factors like parity 
and lactation stage are reported in this article.

The majority of visits (75%) are carried out in northern Italy, while others are carried 
out in the south and in the islands (Figure 1).

Material and 
methods

Results

Figure 1. Geographical distribution of visits.

Figure 2. Kind of visits distribution.
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Regarding the distribution of visits, 65% are ties, 27% time-trimming, 6% visits on 
request and 2% emergencies (Figure 2)

Healthy animals are over 45%.  the most frequent lesions are digital dermatitis (18%), 
soleal ulcer (11%), hemorrhage (7%), wall abscess (7%). Other lesions are less relevan 
(Figure 3).

In addition to the cumulative descriptive statistics, the evolution of hoof lesions per 
year from 2022 to 2024 (Figure 4), and the evolution of hoof lesions per quarter from 
2022 to 2024 are also reported (Figure 5).

Descriptive statistics relating to cumulative hoof lesions are also available, by year and 
quarter, depending on the order of calving and stage of lactation (Figure 6 to Figure 11).

All these descriptive statistics are provided also to farmers at herd level.

Figure 3. Hoof lesions frequency.

Figure 4. Evolution of hoof lesions per year (2022-2024).
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Figure 4. Evolution of hoof lesions per year (2022-2024). 
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Figure 5. Evolution of hoof lesions per quarter (2022-2024).

Figure 6. Hoof lesions and order of calving.

Figure 7. Hoof lesions, order of calving per year.
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Figure 7. Hoof lesions, order of calving per year. 
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Figure 8. Hoof lesions, order of calving per quarter.

Figure 9. Hoof lesions and stage of lactation.

Figure 10. Hoof lesions, stage of lactation per year.
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Figure 9. Hoof lesions and stage of lactation. 

 

 
 
Figure 10. Hoof lesions, stage of lactation per year. 
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HappyFeet project is at starting stage and, of course, data collection is going to be 
enhanced. Further objectives of the Project are:

1.	 To provide benchmark reference at national, regional and herd level.

2.	 To perform an Italian economical evaluation for hoof lesions.

3.	 To set up genetic evaluation for hoof health.

Figure 11. Hoof lesions, stage of lactation per quarter.
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Body Condition Scoring (BCS) is a widely used and subjective method of assessing the 
amount of metabolizable energy stored in fat and muscles in live animals. It provides a 
rapid indication of levels of body fat reserves, e.g., which are crucial in early lactation 
to buffer cows against negative energy balance as they prioritize energy towards milk 
production. However, the rapid mobilization of body fat reserves at early-lactation, 
but also over-condition at late-lactation or dry period can lead to fertility and health 
issues. Therefore, regular monitoring of BCS is essential for maintaining optimal body 
condition, health, and productivity in dairy herds. This paper proposes first ideas for 
standardized ICAR guidelines for BCS recording, emphasizing its applications in herd 
management, genetic improvement, and welfare assessment. We highlight the diversity 
of BCS scales used in the different BCS systems and suggest approaches to overcome 
challenges in comparing responses across different systems. The contributions to 
ICAR guidelines reported here are a direct continuation of the ICAR-IDF webinar on 
“Recording and evaluation of BCS and its relationship with health and welfare” and 
the work done by the “Joint Expert Advisory Group for BCS Guidelines” organized by 
the ICAR Functional Traits Working Group. 

Keywords: animal health and welfare, bovine scoring, energy balance, genetic 
improvement, herd management, ICAR guidelines, welfare assessment,  
Presented at the ICAR Annual Conference 2024 in Bled at the Session 10: New 
approaches in the field of functional traits for management and breeding

Body Condition Scoring (BCS) is considered today an essential tool for evaluating 
the health and metabolic status of dairy cows by estimating their body fat reserves, 
particularly during early lactation. BCS is widely accepted as the most practical method 
for assessing body fat content, mobilization and changes in energy reserves in dairy 
cattle (Bewley et al., 2008). By estimating their status, it assesses the pivotal role that 
fat plays in buffering cows against negative energy balance while they partition energy 
primarily toward milk production. This rapid mobilization of fat reserves but also being 
over conditioned may lead to reproductive and health problems, including fertility issues 
as cows, that are either too thin or too fat, are prone to these disorders (Garnsworthy, 
2006). Optimal body condition is important and requires frequent monitoring of BCS 
which can be used to detect and to correct problems and improve the health, welfare, 
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fertility and productivity of dairy cows and herds (Domecq et al., 1997; Roche et al., 
2007). Figure 1 shows the lactation curves comparing milk production, intake and 
body condition.

The practice of visual and tactile appraisal of BCS began in the 1970s, with one of 
the earliest developments by Jefferies (1961) of a BCS system for ewes and has 
evolved into various numerical systems with multiple scales, depending on the country, 
organization, and intended purpose. While some scales focus on welfare assessment 
and are simple, others are more detailed to optimize feeding strategies by detecting 
early changes in body condition. Despite these advancements, different scoring 
systems can cause confusion when comparing targets and results across farms and 
programs. Moreover, while automated BCS recording is becoming more common, it 
remains challenging to achieve the same accuracy as manual palpation in dairy cattle. 
This contribution to ICAR guidelines is a direct continuation of the ICAR-IDF webinar 
on “Recording and evaluation of BCS and its relationship with health and welfare” and 
the work done by the “Joint Expert Advisory Group for BCS Guidelines” organized 
by the FT-WG. In the following document we will call BCS system the use of a given 
BCS scale in a specific context (e.g., group of animals scores, frequency of scoring, 
use of scores).

There were no simple measures of a cow’s energy reserves or condition prior to 1970s 
(Stockdale, 2001). Because cows of a given weight might be tall and thin, short and 
fat, or both, body weight (BW) alone was not a reliable measure of body reserves. 
Energy storage in cows with comparable body weights differed by as much as 40%, 
according to Andrew et al. (1994) and Gibb et al. (1992), demonstrating the unreliability 
of using BW as the only indicator of body condition. Furthermore, because increased 
feed intake coincides with tissue mobilization during early lactation, reductions in body 
tissue weight may be masked by increased gut fill, meaning that increases in BW 
may not correspond to changes in adipose and lean tissue weight. A strong positive 
correlation (r2 = 0.86) between BCS and the proportion of physically dissected fat in 
Friesian cows as reported by Wright and Russel in 1984 has been used as visual or 

Figure 1. Lactation curves comparing milk production, intake and body condition 
showing reaction of body condition in early and potential over condition at the 
end of lactation.

 

 
Figure 1. Lactation curves comparing milk production, intake and body condition showing 
reaction of body condition in early and potential over condition at the end of lactation. 
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tactile (palpation) appraisal of cow condition or BCS. This provides a good assessment 
of body fat reserves, ignoring, or minimizing the influence of frame size and intestinal 
contents (Wright and Russel, 1984). This traditional subjective appraisal has been 
rationalized into various numerical BCS systems using many different scales. This 
diversity in scales is based on the purpose of recording BCS and different scales 
employed in different circumstances by different countries or organizations (i.e., BCS 
Systems).

In contrast to some other traits with very precise definitions, there are wide variety of 
scales that have been used to measure body condition. This variety of scales is also 
based on the purpose of recording the BCS and on different scales used in different 
circumstances by different countries or organizations, resulting in different BCS 
systems. 

A large variety of BCS scales exist today. Some are reported in Table 1. It is important 
to notice that the number of classes available to the assessors is the important feature 
allowing fine scoring, not the numerical boundaries. Jefferies (1961) initially developed 
a BCS system for ewes which involved palpation of backbone and lumber processes, 
feeling the sharpness, and covering of the bones. He developed a scale from 0 to 5 
(here after called 0-5 scale), where 0 was extremely thin, i.e. no longer viable, and 5 
was extreme obese. His technique was adapted for scoring beef cattle by Lowman et 
al. (1973) which involved palpation of the lumbar vertebrae and around tail head. Table 
1 give some other relevant reference methods. Subsequently a similar system with 0-5 
(11 classes) was proposed by Mulvany (1977) in the UK but introduced adjustment 
factors if the scores in the tailhead and the loin areas differed. In Australia, an 1-8 
system (15 classes) of scoring dairy cows was developed by Earle et al. (1977) and 
a similar 1-10 system (19 classes) developed in New Zealand (Roche et al., 2004). 
Both scoring systems used photographs of individual cattle to define condition scores. 
Body condition scoring of dairy cows in the US is generally performed according to 
the scale 1-5 (Wildman et al., 1982). This method, like those used in the UK, involves 
palpating cows to access the amount of tissue under the skin. As for many scales 
different variants were proposed. Ferguson et al. (1994) also used a 1-5 scale but 0.25 
interval leading to 17 classes. Body condition score being an optimal intermediate trait, 
and, in all scales, lower values indicate a leaner body conditioning in cows, whereas 
higher values indicate greater obesity level. Several scales used in various countries 
are summarized in Table 1.

BCS scales and their 
diversity

BCS scales across 
countries

Table 1. Various BCS scales used in different countries along with the method of assessment.
 
Table 1. Various BCS scales used in different countries along with the method of assessment. 
 

Country Scale 
Interval 

(classes) 
Method References 

United Kingdom, Ireland  0 to 5 0.5 (11) Palpation Mulvany (1977),  
New Zealand  1 to 10 0.5 (19) Palpation Roche et al. (2004) 
Australia  1 to 8 0.5 (15) Visual Earle et al. (1977) 
United States  1 to 5 

1 to 5 
1 (5) 0.25 

(17) 
Palpation/Visual 
Palpation/Visual 

Wildman et al. (1982) 
Ferguson et al. (1994) 
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Developments of various BCS scoring system were based on circumstances and 
purposes such as breeding, herd management, and welfare. Within each system 
factors like granularity of scoring (i.e., scale and intervals used), population evaluated, 
timing, and frequency various within different systems. Recent advancements in 
technology-assisted or even technology-driven BCS systems are also leading to other 
BCS systems. This leads to challenges as this variation among systems can lead to 
confusion when comparing and difficulty exists in interpreting the literature. Especially 
putting together data across different herds and different BCS systems and can require 
transformations of scales.

Currently in many countries BCS is scored in routine once in first lactation inside the 
linear scoring system used for genetic evaluation for conformation. Therefore, a 1-9 
scoring scale (9 classes) is taken as a linear scale although BCS is not a true linear 
trait. The covering of fat over the tail head and rump is taken as the reference point 
and is scored as described in Figure 2. For the score ranging from 1-6, the accessor 
has to look at the loin, while the tail implant is important with the higher scores (7-9). 

Diversity in BCS scoring 
systems

Using Body 
Condition Score 
(BCS) 

Description of some 
commonly used 
scoring system

BCS system associated 
to linear scoring and 
genetic evaluations (1-9 
scoring scale)

Figure 2. 1-9 BCS scale (adapted from ICAR).

 

 
 
Figure 2. 1-9 BCS scale (adapted from ICAR). 
  

Detailed information describing the way the 1-5 scoring scale with 0.25 intervals (17 
classes) are assigned are given by Edmonson et al. (1989). In Figure 3, the major 
elements for assigning the 5 major steps are given as an example.

Manual assessment of BCS involves palpating key body regions (e.g., ribs, spine, hips) 
to estimate fat and muscle reserves. Figure 4 shows the anatomical features associated 
with body condition scoring. This method remains reliable but is subject to assessor 
variability. Consistency in training assessors is crucial to reduce this variability. 

Automated BCS recording using digital technologies, such as 3D imaging systems, 
is becoming more widespread. These tools offer a more objective and consistent 
assessment of BCS, minimizing human error. However, technological limitations still 

BCS based on a 1-5 
scoring scale

How to assess BCS

Manual assessment  

Digital tools
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make it challenging to achieve full accuracy, particularly when compared with manual 
palpation. Three levels were identified and can be recommended:

1.	 Use of digital tools to document and do easy recording of visual assessments.

2.	 Technology-assisted assessments: Human assessors are still doing the scoring 
but devices providing support to the manual assessment replacing the human 
eyes. These tools should be easy to use, resilient to environmental disturbance, 
and allow easy identification of animals and data transfer.

3.	 Technology-driven assessments: These are purely automatic sensor-based 
technology driven assessment that should be more reliable, allowing more frequent 

Figure 3. Example of an 1-5 BCS scale chart (Modified from Edmonson et al., 
1989).

 

 
 
Figure 3. Example of an 1-5 BCS scale chart (Modified from Edmonson et al., 1989).  

Figure 4. Anatomical features associated with body condition scoring in cattle. (Huang et 
al., 2019).

 

 
 
Figure 4. Anatomical features associated with body condition scoring in cattle. (Huang et al., 
2019). 
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on-farm BCS assessment. Technologies are diverse, generally digital images of 
the rear aspect of the cow based or 3D body condition scoring using fixed position 
optimized camera systems.

Although Garnsworthy (2006) and others highlighted the common practice of BCS 
systems to assess similar body parts and to establish links between scores and levels 
of adiposity, there are concerns about the reliability of simple mathematical conversions 
between different scales. These might not be accurate because scales may use the 
range of conditions not linearly (Garnsworthy, 2006). Therefore, we recommend only 
using these equations with caution, and only when no other information is available. 
As example here are the proposed transformations towards a 1-5 scale:

•	 1-4 scale:	 BCS x 4/3 – 1/3

•	 0-5 scale: 	 BCS x 4/5 + 1

•	 1-8 scale: 	 BCS x 4/7 + 3/7

•	 1-9 scale: 	 BCS / 2 + 1/2 

•	 1-10 scale: 	 BCS x 4/8 + 5/9

An alternative way to develop conversion equation was presented by Roche et al. 
(2004). In their method simultaneous scoring is required (Figure 5). Still enough 
variability at the extremes is needed and local scales may be adapted to local 
populations (e.g., breeds) making conversion more difficult.

Under the hypothesis that all scales describe the same underlying trait, the adiposity 
of animals in a given population, the distribution of attributed scores using each scale 

Recommendations 
for use of BCS 
scales

Conversion between 
BCS scales

Mathematical 
conversion

Conversion based on 
simultaneous scoring

Figure 5. Conversion equations based on simultaneous scoring in the USA, IRE and AUS of local cows 
using local and NZ scales (Roche et al., 2004).

 

 
 
Figure 5. Conversion equations based on simultaneous scoring in the USA, IRE and AUS of 
local cows using local and NZ scales (Roche et al., 2004). 
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can be mapped a posteriori to this underlying normal distribution (i.e., z-scores which 
are the standardized distances from the zero of a normal distribution) using appropriate 
methods (e.g., Snell Scores). Figure 6 shows how a posteriori 5-class respectively 4 
-class score scales can be mapped to a common scale or even common classes. In 
this example scores 1 and 2 of the 5-class match approximately to 1 of the 4-class 
scale, as do 3 to 2, 4 to 3 and 5 to 4. The z-scores can obviously also be used directly 
as a common measure of adiposity.

Under the hypothesis that both scoring scales are used on animals representing 
the same population with large enough sample sizes this method does not require 
simultaneous scoring.

BCS plays a vital role in managing dairy herds, allowing farmers to adjust feeding 
strategies and monitor metabolic health. Frequent BCS assessments help identify cows 
that are either losing or gaining condition too quickly, which may indicate underlying 
health or nutritional issues. In general, five BCS classes are usually sufficient to capture 
significant BCS variability, but can be increased for specific purposes (e.g., feeding 
optimization, early detection of health problems) or reduced for welfare assessments 
aiming only to detect the general status of the cows (too thin – normal – too fat) (Table 2).

Figure 6. Matching scores taken on 5- and 4-class scales using Snell 
Scores (Snell, 1964).

 
 

Figure 6. Matching scores taken on 5- and 4-class scales using Snell Scores (Snell, 1964). 
  

Recommendations 
for herd 
management 

Table 2. Various BCS scales proposed for specific purposes
 
Table 2. Various BCS scales proposed for specific purposes 
 

Purpose 
BCS 
Scale 

Frequency Remarks 

Feeding advice 5 classes Frequent and longitudinal Identification of cows with BCS 
change indication potential health 

problems and optimization of feeding 
Detection of 
metabolic 
disturbance 

5 classes Before and after calving and at 
least 2 time before peak of 

lactation (~50 DIM) 

Enables BCS change in the herd 

Welfare 
assessment 

3 classes 
 

Detect general status of cows (thin-
normal-fat) 
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Table 3 outlines the recommended frequency for BCS assessment depending on key 
stages in the cow’s lactation cycle:

With an optimal recording scheme could be (in bold recommended): Dry off, Pre-calving, 
Calving, Early lactation/Pre-service, 1st Service, Pregnancy Check, and Late lactation.

It should be noted that a representative random stratified sample of cows representing 
all lactations should be measured at least at the beginning (pre-service), at the end of 
the lactation (drying-off), and before calving to ensures effective assessment. In herds 
at risk of transition cow issues, more frequent recording of all at-risk cows is required.

In individual cow management, BCS can be used as a troubleshooting tool to adjust 
feeding programs or identify health concerns. For example, cows that drop below a 
certain BCS threshold may require increased energy intake, while those with higher-
than-recommended scores might benefit from a restricted diet. These measures are 
essential for improving not only productivity but also fertility, feed efficiency, and overall 
wellbeing in dairy herds.

Detection of extreme BCS animals is required for individual cow management, therefore 
finer scales than only 5 classes and repeated recordings to enable detection of body 
condition changes are recommended.

Table 3. Timing of BCS assessments.
 
Table 3. Timing of BCS assessments 
 

Moment Recommended frequency 

Pre-calving:  Conduct BCS evaluations approximately 3 weeks before calving 
to ensure optimal condition.  

Early-lactation:  Closely monitor BCS during the peak of lactation to detect 
metabolic imbalances early.  

Dry off period:  Assess BCS 7-8 weeks before calving to adjust feeding as 
needed 

 
  

Recommendations 
for individual cow 
management

Figure 6. BCS chart used in Ontario, Canada. 
(https://www.ontario.ca/page/body-condition-scoring-dairy-cattle).
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We recommend developing optimal BCS lactation curves based on breeds and 
management system. Figure 6 shows the chart developed in Ontario, Canada, that 
allows farmers to plot individual cows on this chart according to stage of lactation. 
This optimal BCS lactation curves can be used to profile a herd at one point time or 
to monitor changes over a lactation for an individual cow.

BCS is recognized as an intermediate optimum trait in genetic selection. Incorporating 
BCS data into genetic evaluations enhances breeding programs, particularly for 
selecting cows with a more favorable balance between milk production and metabolic 
health. The use of BCS as auxiliary trait is common in many genetic evaluation systems 
(e.g., for fertility). Regular, accurate BCS data collection allows for better herd selection 
and ultimately contributes to long-term herd sustainability. Current practice is organized 
in parallel to linear scoring which involves in most systems recording BCS once in a 
lifetime done during 1st lactation using the same 1-9 scale as for linear scores.

Our recommendations are that for genetic evaluation BCS should be recorded on 
all cows on a frequent basis throughout the cow’s life with at least a 5-class scale. 
Obtaining repeated records of BCS can also be useful for the derivation of novel traits 
such as resilience and resource allocation. Weakness of single recording on a cow 
level can be partially compensated by appropriate modeling of BCS changes on a 
sire level through its progeny. Even if this single measurement does not capture the 
BCS variation throughout the cow’s lactation, on the level of the offspring of a sire we 
recommend the use of random regression models to assess the heritable changes 
observed in the progeny of a given sire. 

As explained previously, current practice in welfare monitoring BCS systems is the 
use of a 3-class scale which is sufficient in this context. Because assessment is only 
conducted once at a specific point in time, a critical element is sampling a representative 
group of animals, including recording of relevant elements to ascertain this (e.g., parity, 
lactation stage).

As for other BCS systems, to maximize synergies, for example with herd and individual 
cow management, and breeding, it would be beneficial if all animals were assessed 
even in a welfare monitoring. This would also allow the detection of individuals with 
specific welfare issues. 

In addition to the recorded BCS, also to allow further use the following information is 
recommended to record: unique Animal ID, Herd ID, breed, date of recording, assessor-
ID, BCS Scoring System (linked to a comprehensive description of the system), days 
to / from calving in relevant parity and parity number.

Recommendations 
for genetic 
evaluation

Recommendations 
for welfare 
monitoring 

Important 
considerations

Additional data to be 
recorded
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An important element is the training of accessors. First, they need to have a clear 
understanding of and training on the BCS Scoring System. Standard Operating 
Procedures (SOP) along with a scoring chart and ensuring comprehensive and 
regular training on utilizing these resources effectively need to be developed. Frequent 
harmonization between assessors is needed. Best practice is that different assessors 
score the same farm(s) and grouping of data across different farms is done e.g. the 
data is used for benchmarking. Finally frequent evaluation of inter- and intra-assessors’ 
repeatability is important especially for use in research studies.

For herd management information on individual cows could be of less importance. 
But to effectively benchmark, manage herds, and genetically evaluate animals, it is 
crucial to centralize the collected information into a database. Benchmarking enables 
comparisons among farms and the identification of areas for improvement. However, 
for meaningful comparisons between herds, factors such as assessment frequency, 
lactation stage, and recording must be considered and therefore recorded (see point 
“Additional data to be recorded”). Furthermore, the data should be representative of 
the population and the distribution of BCS is more relevant rather than just means. 

Body Condition Scoring is a key method for assessing the health and wellbeing of 
dairy cows, providing a practical measure for managing herd nutrition, productivity, and 
welfare. Standardizing BCS scales and recording methods is crucial to improve data 
consistency across regions and systems. While technological advancements, such 
as automated scoring, offer promise, manual assessments remain important. Regular 
BCS monitoring, along with harmonized guidelines for recording, will support better 
decision-making in herd management, genetic selection, and welfare assessment. Here 
we presented the first proposal draft of guidelines for the scoring of body condition 
in dairy cattle. This should lead to comprehensive guideline aiming at standardizing 
BCS methods and includes considerations and recommendations for improved BCS 
recording in the context of a herd management, animal welfare, and genetic evaluation 
maximizing also synergies between BCS systems.

We would like to thank the “Joint Expert Advisory Group on BCS Guidelines” and all 
participants of the ICAR-IDF webinar for their valuable contributions to this proposal.
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Since 2016, using the Annual Nutrient Cycling Assessment (ANCA, Kringloopwijzer) tool 
has been mandatory for all Dutch Dairy farmers. ANCA determines the farm-specific 
environmental performance. This includes: 

•	 Efficiency of feeding (conversion of N and P from feed into milk and meat).

•	 Crop yields for N, P, C, energy (kVEM).

•	 Efficiency of fertilisation (conversion form fertiliser and manure into crop yields).

•	 Production of manure, excretion of N and P.

•	 Surpluses of N, P on farm balance and soil balance.

•	 Carbon sequestration.

•	 Ammonia emissions.

•	 Green House Gas emissions (CH4, N2O, CO2). 

Therefore, one of the primary objectives of the Kringloopwijzer is to evaluate the 
methane (CH4) and carbon dioxide (CO2) emissions associated with milk and meat 
production. Approximately 75-80% of methane emissions on dairy farms stem from 
fermentation in the gastrointestinal tract, with the remainder originating from manure 
storage. The CH4 emissions from rumen enteric fermentation in dairy cattle are 
derived from methane emission factors (EF) for different feedstuff, which is a linear 
application of the Dutch Tier 3 method (IPCC). While this approach is robust, it does 
not include genetic variation among cows with on different farms, assigning the same 
emission value to all cows on all farms based solely on their dietary composition and 
feed intake. Genetic selection is considered one promising way to reduce methane 
emission, given that its effects are cumulative and permanent. Consequently, there 
has been growing interest in incorporating genetic information into the calculation of 
CH4 emissions for the entire dairy herd. In this project we evaluated the differences in 
average breeding value for CH4 between farms, thus without any selection practised 
yet. The results demonstrate that differences between farms represents up to 3.7 to 
5.1% of the CH4  and adding the breeding value has potential in refining the existing 
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ANCA tool. The ambition is to use breeding value (EBV) for CH4 emissions for Dutch 
cows in the coming years. 
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Since 2016, the Dutch dairy sector has utilized the Annual Nutrient Cycling Assessment 
(ANCA) tool to evaluate farm-specific environmental performance indicators. These 
indicators encompass feeding efficiency, crop yields, fertilization efficiency, manure 
production, nutrient surpluses, ammonia emissions, and greenhouse gas emissions. 
The primary goal of the ANCA tool is to quantify methane (CH4) and carbon dioxide 
(CO2) emissions associated with milk and meat production, adhering to IPCC guidelines 
while integrating national emission factors. This initiative is funded by the Ministry of 
Agriculture, Nature and Food Quality and ZuivelNL.

Methane emissions from dairy cattle are calculated based on estimated feed intake 
and diet composition. Each feedstuff has 3 emission factors (EF) for methane 
(g/kg dry matter) for when that feedstuff is fed in diets with 3 levels of maize silage (vs 
grass silage) in the roughage part of the diet: EF0, EF40 and EF80, where the number 
indicated the percentage of maize silage. These EF factors have been derived by 
using the IPCC Tier 3 method (Van Dijk et al., 2022).This method employs a dynamic 
mechanistic simulation model to determine emission factors based on the chemical 
composition and digestion characteristics of specific feed ingredients. The ANCA tool 
interpolates methane emissions based on the proportion of maize silage in the diet and 
adjusts for variations in feed intake and emissions from young stock. While this approach 
allows for accurate assessment and potential mitigation of methane emissions in dairy 
farming, it overlooks genetic variations among cows within a single farm, assigning the 
same emission value to all cows based solely on their diet.

Genetic selection is considered a promising method to reduce methane emissions, as 
its effects are cumulative and permanent. Consequently, there is growing interest in 
incorporating genetic information into the calculation of CH4 emissions for the entire 
dairy herd. The ambition is to utilize the breeding value (EBV) for CH4 emissions in 
Dutch cows in the coming years. The initial proposal involves integrating data on the 
average EBV of a farm’s cows to identify potential differences among farms. Therefore, 
the objective is to investigate how to incorporate individual genetic information into the 
calculation of CH4 emissions for the entire dairy herd.

The data included 8,858 Dutch Holstein cows with 152,172 records of CH4 concentration 
(CH4c in parts per million, ppm). These records were collected in primiparous and 
multiparous cows during 2019 to 2023 in 72 commercial farms in the Netherlands. 
Parities were grouped into categories of 1, 2, 3, and 4+, and records up to lactation 
week 59 were included (406 DIM).
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Variance components and EBV were estimated with an univariate repeatability (animal) 
model in ASReml 4.0 software. The general model used to estimate the variance 
components for CH4c was:

y = Xb + Z1a + e 							       (1)

where y is the vector of phenotypes (CH4c); b represent the vector of fixed effects 
(herd, year-season interaction, week of lactation and  the interaction of lactation 
number with age of cow at calving). X is the incidence matrix relating observations 
with fixed effects; a is the vector of direct additive genetic effects; Z1 is the incidence 
matrix relating observations with random genetic effects; and e is the vector of residual 
effects. Distributions of the random effects are var(a) = As2,where A is the pedigree 
relationship matrix and s2 is the additive genetic variance, and var(pe) = Is2pe, where 
I is an identity matrix of an order equal to the number of observations and s2pe is the 
permanent environmental variance., and var(e) = Is2e, where I is an identity matrix of 
an order equal to the number of observations and s2e is the residual variance. The 
pedigree included 98,324 individuals, with maximum 14 generations. 

As part of the proposal to include genetics in the annual nutrient cycle assessment, 
mean EBV for CH4c per farm were calculated, divided in quantiles and plotted to detect 
differences among farms. Differences among quantiles were calculated to determine 
the maximum difference in CH4c between them. The data was divided into four equal 
groups (called quantiles) based on the values of the mean EBV per farm. Then, the 
dataset was split into 4 quantiles which assigns each observation to one of four equally 
sized groups according to the distribution of the mean EBV per farm. Subsequently, a 
mean of each quantile group was calculated, to allow us to see how the average value 
in each group compared to the overall average. Finally, we measured how much this 
group’s average differed from the overall average. 

 

The daily average for CH4c was 552 parts per million (ppm), whereas, the standard 
deviation was 272. Genetic variance was 5,434, phenotypic variance was 14643, and 
the heritability was 0.12 (SE=0.01), whereas, the permanent environmental ratio was 
0.33 (SE=0.01). Number of cows per farm (n=72) varied between 38 and 245. This 
average is consistent with values previously reported for Holstein cows (Difford et al., 
2020; Manzanilla-Pech et al., 2022; van Breukelen et al., 2022).

Average breeding values per farm varied between +41 to -5 for the 72 farms (Figure 1). 
Standard errors ranged between 1 to 8. However, when EBV were grouped per quantile 
(Figure 2) the difference between quantile 1 and quantile 4 is 20.6 points. This showed 
a difference between farms present in the first quantile compared to the farms in the 
fourth quantile. By increasing the number of quantiles this difference will increase too 
(e.g. 10 quantiles will lead to a difference of 28 points between farms. 
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The results of this study demonstrate that differences between farms can be detected by 
averaging their breeding values. This method has potential applications in refining the 
existing ANCA tool by incorporating a correction factor. Although still in development, 
the final correction factor will be based on CH4 g/d. The EBV for CH4 g/d will utilize the 
genetic correlation (0.76; van Breukelen et al., 2023) between CH4 concentration in 
ppm measured by sniffers and CH4 g/d determined by the GreenFeed system. Finally, 
the correction factor would adjust for the average genetic merit of the animals present 
on each farm, leading to more accurate evaluations and comparisons.

Figure 2. Quantile differences (25%) between farms for average EBV for CH4 ppm.

Figure 1. Average EBV for CH4c (ppm) per farm (n=72) with SE. 

 

 
Figure 1. Average EBV for CH4c (ppm) per farm (n=72) with SE.  
  

 
 
Figure 2. Quantile differences (25%) between farms for average EBV for CH4 ppm  
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This pilot study aimed to assess the feasibility of incorporating genetic information into 
the calculation of CH4 emissions from ANCA for the entire dairy herd. This study showed 
that it is feasible to detect differences among farms when averaging the CH4 breeding 
values of the cows per farm. The difference between extreme farms was 20 points 
between the top and bottom 25% and up to 28 points (CH4c ppm) between the top and 
bottom 10%, which represents up to 3.7 to 5.1% of the enteric CH4c per farm. These 
results are promising and will be used as first step to build the new additions around 
the ANCA formulation that will involve genetic information.

The authors kindly acknowledge KE project “From breeding values to bull selection” 
for providing this data collection. 
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Life Cycle Assessment (LCA) is a crucial methodology for evaluating environmental 
impacts, and its integration with machine learning (ML) regression offers promising 
new applications. While LCA is widely used, its combination with ML can significantly 
enhance predictive accuracy. However, the importance of robust datasets is often 
overlooked, and LCA datasets frequently suffer from issues such as missing values, 
which compromise the accuracy and reliability of the assessments. This study addresses 
these challenges by leveraging ML regression not only for final predictions but also as a 
tool for cleaning and preparing datasets. We propose a systematic approach to identify 
and select the most suitable regression algorithm for a dataset with missing values. 
This approach involves analyzing dataset characteristics and applying different ML 
regression techniques to find the best fit. Our method was validated by applying it to 
three distinct datasets, each with unique data quality issues. The results demonstrate 
that using ML regression for both prediction and data cleaning can significantly improve 
the robustness and reliability of LCA assessments..

Keywords: life cycle assessment (LCA), carbon footprint, machine learning 
regression, environmental impact prediction, intensive dairy cattle farming  
Presented at the ICAR Anual Conference 2024 in Bled at the Session 11: Methane 
Emission-Free Communications: Genetics, Environmental, and Life Cycle 
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The livestock sector accounts for about 12% of total anthropogenic greenhouse gas 
(GHG) emissions, with dairy production contributing 30% of this total (FAO, 2022). 
In recent years, consumers have increasingly demanded environmental information, 
demonstrating a significant interest in the environmental impacts of the agri-food 
sector (Potter et al., 2022). The sustainability of animal-based products is a highly 
topical issue, with environmental concerns leading to conflicting perceptions among 
stakeholders (Leroy et al., 2022). Therefore, it is becoming necessary to provide 
adequate information to make society aware of the environmental impacts of agriculture 
and livestock production (Stygar et al., 2022). Life Cycle Assessment (LCA) is a valuable 
and standardized methodology (ISO 14040:2006; ISO 14044:2006) used to estimate 
the emissions per unit of product and identify the sources of environmental burden 
along the supply chain (Rossi et al., 2024; 2023). LCA provides a holistic approach to 
account for both direct and indirect environmental emissions and has been effectively 
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applied in numerous studies focusing on food of animal origin and the majority of which 
considered emissions of GHGs (Thumba et al., 2021). 

In conducting LCA studies, one of the most significant challenges is the acquisition of 
a sufficiently extensive and accurate dataset of primary data. This difficulty is inherent 
to the methodology itself, as the accuracy of environmental impact assessments 
hinges greatly upon the availability and quality of primary data. However, obtaining 
such data can be arduous and resource-intensive, requiring meticulous data collection 
efforts across various stages of the product lifecycle. In instances where primary data 
collection proves impractical or unfeasible, it may be necessary to consider leveraging 
existing databases or literature data, commonly referred to as secondary data. While 
secondary data can offer a valuable alternative, their use introduces complexities and 
uncertainties, as they are inherently reliant on the assumptions and methodologies 
employed in previous studies. Consequently, the reliability and accuracy of the results 
obtained from secondary data depend heavily on the validity and applicability of these 
assumptions, underscoring the need for careful consideration and scrutiny. Recognizing 
these challenges, researchers have increasingly explored the integration of Machine 
Learning (ML) techniques to augment traditional LCA methodologies. The use of ML 
algorithms offers a potential solution to address common limitations encountered 
in LCA studies, particularly pertaining to inventory compilation and completeness, 
as well as environmental impact calculation or estimation. ML offers the potential to 
automate and optimize data processing tasks, enhance the accuracy of predictive 
models, and uncover complex patterns and relationships within large datasets. As 
such, the integration of ML holds promise in overcoming data-related challenges and 
advancing the capabilities of LCA methodologies in assessing environmental impacts 
comprehensively and effectively..

However, the application of this methodology has encountered some challenges when 
applied to animal-based products, primarily due to difficulties in assessing emissions 
arising from biological processes (Lanzoni et al., 2023). The rationale behind these 
limitations stems from the methodology’s original design, which was primarily intended 
to evaluate environmental emissions in industrial processes before being adapted for 
use in various fields, including agriculture (Caffrey and Veal, 2013). The challenge 
of adapting the LCA framework to farming systems lies in identifying additional key 
aspects that must be considered to use this approach effectively for livestock production 
and achieve an appropriate environmental evaluation. Applying LCA to agricultural 
systems is challenging due to their varied factors and dynamic connections. Particularly 
difficult is the large amount of data required for the LCA, which may have an impact 
on the quality of the data and the predictability of the results. (Nirmala et al., 2023). 
Seasonal conditions and long-term processes involving field and herd management 
make it challenging to gather reliable information, requiring significant time to develop 
a comprehensive understanding of farm activities and interactions (Caffrey and Veal, 
2013). Additionally, the low accuracy and limited accessibility of primary data collection 
can result in a lack of representativeness, insufficiency, or even a complete absence 
of necessary input data for LCA analysis at farm level (Pradeleix et al., 2022).

The contemporary landscape unambiguously demonstrates the pervasive influence of 
data-driven paradigms, as evidenced by the fact that an enormous amount of data is 
continuously being generated and collected every second by almost every electronic 
device currently in use.

LCA critical data 
aspects in dairy 
farms

Machine Learning 
contribution to data 
prediction
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Being able to manage and use this large amount of data is quite complex, but in recent 
years thanks to research on artificial intelligence, the valorization and use of this data is 
becoming possible. This field of research is itself divided into numerous subcategories, 
including Machine Learning (ML). Machine learning is a field of research that concerns 
the study and implementation of mathematical algorithms capable of learning from 
data and interpolating or predicting unseen data. The ability to analyze huge amounts 
of data and extract insights has become a crucial requirement in many use cases.

Machine learning approaches can be divided into three main categories, which 
correspond to the ways in which the system can be trained.

•	 Supervised learning: The system is trained with tuples of inputs and the desired 
outputs. The objective is to learn a general rule that maps inputs to outputs.

•	 Unsupervised learning: The system is trained by providing only input data, letting 
it independently search for a structure in it. This type of learning is widely used 
when you want to discover hidden patterns within a dataset.

•	 Reinforcement learning: The system is trained using a reward strategy. As the 
system searches for patterns within the data, as with the previous category, it is 
provided with feedback on its learning. These feedbacks are a sort of reward and 
the system tries to maximize them.

In general, when the term “data prediction” is employed, it is understood to refer to 
a machine learning model that performs a regression analysis with a supervised 
approach. This type of analysis follows a statistical process to estimate a mathematical 
function between input and output data. These predictive models are used in numerous 
fields, from engineering sciences to social networks, agriculture, finance, security, etc.

Machine learning has become a tool capable of providing information that allows those 
who are using it to make choices based on statistical models rather than on intuitions, 
conjectures, or suppositions. Moreover, the scalability and automation enabled by 
machine learning algorithms facilitate process optimization, reduced operational costs, 
and increased productivity, thus promoting organizational growth and sustainability in 
an environment characterized by increasing dependency on data. To streamline the 
discussion, the term “Machine Learning” will be used throughout the remainder of the 
paper to refer to supervised regression models.

The need to make the Life Cycle Assessment methodology increasingly accurate in 
predicting environmental impacts is leading to its conjunction with Machine Learning 
techniques. Current research in this field is mainly focused on improving LCA models 
through the application of ML algorithms, with the aim of improving the accuracy and 
efficiency of environmental impact assessments. A growing literature shows how 
machine learning is enhancing the precision of predictions derived from LCA studies. 
For instance, Romeiko et al. (2024) state that ML applications are concentrated on those 
stages of LCA that necessitate a substantial investment of effort, such as inventory, 
impact assessment, and result interpretation. With regard to the initial stage, ML was 
employed to estimate the overall life cycle inventory (LCI) and to predict the product 
properties required for the realization of the final LCI. The main application of ML to 
support LCA studies is the use of algorithms to predict environmental impacts. The 
agricultural sector represents the most extensively analyzed sector in this regard, with 
algorithms employed to estimate yield, energy use, and life cycle impacts. Lastly, in 
the interpretation stage of the results, ML was employed in a variety of ways. These 
included the minimization of assessed impacts, the identification of patterns and the 
main drivers of life cycle impacts, the understanding of uncertainty and the sensitivity 
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of the results and the classification and assessment of relationships between indicators 
and environmental impacts. In light of the aforementioned considerations, there are 
only a few works that exploit ML to optimize the quality of the dataset. While machine 
learning can significantly aid in predicting environmental impacts, the reliability of 
these predictions depends on the availability of high-quality data. Consequently, there 
is a clear need for reliable data to support more accurate ML and LCA modeling. The 
complexity and uncertainty of environmental data require careful consideration of the 
datasets used in ML models to ensure that predictions are robust, with low error rates, 
and therefore applicable to real-world scenarios.

One of the most significant challenges in LCA is the presence of missing data within 
datasets. This can result from data incompleteness, measurement errors, or data 
collection limitations. Traditional approaches for handling missing data, such as 
mean- or median-based inferences, are often limited in their effectiveness and may 
lead to biased or unreliable results. In contrast, machine learning techniques present 
a compelling solution to this challenge, offering sophisticated algorithms for data 
completion and imputation. ML models can infer missing values with remarkable 
accuracy by leveraging the inherent structure and patterns within LCA datasets. This 
enhances the efficiency and reliability of LCA analyses. Furthermore, ML systems can 
capture complex relationships and dependencies within the data, enabling more robust 
assessments of environmental impacts.

In conclusion, although the integration of ML into LCA is a promising development for 
predicting environmental impacts, the current research tends to overlook the importance 
of good datasets. Ensuring the quality and relevance of the data used is crucial for the 
accuracy and reliability of the predictions made by ML-LCA models. This work wants 
to reduce this gap by focusing on the creation of high-quality datasets that can support 
the predictive capabilities of ML algorithms within the LCA framework.

In this section, we present our methodology, which consists of steps leading to the 
choice of a regression machine learning model for predicting missing data from a 
given dataset.

As mentioned in the previous sections, there are various regression models, each with 
advantages and disadvantages that make it more or less suitable for a specific use case.

The following is a list of the main regression algorithms involved in our approach, with 
a description of their modell.

1.	 Linear regression is one of the most frequently used regression algorithms in 
Machine Learning. It finds the linear relationship between the input variables 
and output variables using a best-fit straight line. Basically, the linear regression 
algorithms assume that there is a linear relationship between the inputs 
and the outputs. Formula 1 shows a simplification and generalization of the 
mathematical equation on which the computation of the linear regression is 
performed. 
 
y = 𝛼0 +𝛼1x1 +𝛼2x1 +..…+𝛼nxn     	  (1)
 
In the above formula,  
y is the output variable of the model 
xi is the i-th input variable
𝛼i is the i-th coefficient that is estimated by the model
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2.	 Ridge regression is a variant of the linear regression that use penalty 
terms to minimize the error between the predicted and actual values.  
 
Referring to the previous equation, the penalty term is the sum of the 
squares of the coefficients. This regularization is called L2 regularization 
and it shrinks the coefficients but doesn’t set any of them to zero. 
 
It is particularly useful to mitigate the problem of multicollinearity in linear 
regression, which commonly occurs in models with large numbers of parameters. 
Multicollinearity occurs when an input variable is highly correlated with one or more 
of the other input variables in a regression. Multicollinearity is a problem because 
it undermines the statistical significance of an input variable. 

3.	 Lasso regression is also a variant of linear regression that uses penalty 
terms to minimize the error between the predicted and actual values. Unlike 
the previous technique, it uses a regularization called L1 regularization. In this 
technique, the penalty term is the sum of the absolute value of the coefficients. 
It can reduce some coefficients to zero, effectively performing input selection. 
It is particularly useful to reduce the overfitting of the model.

4.	 Polynomial regression extends linear regression by fitting a polynomial equation to the 
data, allowing for non-linear relationships between input and output variables. Formula 
2 shows a simplified and generalized example of a polynomial function of n-th degree.   
 
y = 𝛼0 +𝛼1x1

1
 +𝛼2x1

2
 +..…+𝛼nxn

n
    	 (2)

5.	 Decision tree regression is a non-linear regression model. The main function 
of this technique is to split the dataset into smaller sets. The splitting of the data 
results in a tree-like structure. A decision tree is like a flowchart where each 
prediction starts from the root node and, based on some criteria, moves along a 
path of internal nodes called decision nodes until reaching the leaves that contain 
the result.

6.	 Random forest regression is a collection of multiple decision trees. Each tree 
is independently trained so that each tree turns out to have a slightly different 
structure from each other. When we run a prediction using this model, we are 
essentially asked for the prediction at each individual tree, then their predictions 
are aggregated to identify the most suitable result. 

7.	 Support vector regression is a technique that aims to find a hyperplane that 
best fits the data points in a continuous space. This is achieved by mapping the 
input variables to a high-dimensional feature space and finding the hyperplane 
that maximizes the distance (margin) between the hyperplane and the closest 
data points, while also minimizing the prediction error.

8.	 Gradient boosting regression is a technique that builds a sequence of weak 
learners, typically decision trees, with each new learner correcting errors made by 
the previous ones.  In each iteration, the algorithm computes the residual error, 
which is equal to the actual value minus the predicted value. This error is then 
used to train a new weak model, with the objective of minimizing it. The process 
is repeated until a stopping criterion is met.
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The approach presented below is designed to assist in the selection of an optimal 
machine learning algorithm for prediction purposes, while also facilitating the 
incorporation of missing values from a given dataset.

For simplicity and usability, our approach is presented as a decision tree.

As represented in Figure 1 the methodology guides the selection of a model based on 
key considerations derived from a dataset. The initial inquiry concerns the presence 
of missing values within the dataset, directing to either proceed with further analysis or 
conclude that no regression model is required. The subsequent step is to interrogate 
the linearity of the input-output relationship, in case a linear relationship exists, the 
Linear Regression approach should be selected. Conversely, an additional evaluation 
is necessary to determine whether the relationship exhibits non-linearity. If this is the 
case, then complex interactions of high-order relationships between inputs should be 
revised. This process can be accomplished by either Polynomial Regression if there 
are such interactions, or Decision tree Regression if not there are not. In the event that 
the relationship is found to be non-linear, further investigation should be conducted to 
ascertain the necessity for effective handling of outliers or noise. If these are present, an 
evaluation regarding the size and dimension of the dataset is necessary. With a small 
to medium-sized and high-dimensional dataset, the Support Vector regression model 
should be used. While with another type of dataset, the Random Forest regression 
would be the ideal solution. In the event that there is no necessity to address outliers 
or noise, it would be beneficial to determine whether the input selection is a priority 
or not. If so, it would be advisable to identify any instances of multicollinearity and 
select Ridge Regression if the latter is present or Lasso Regression if not. In the case 
where the input selection is not a primary concern, an assessment of the importance 
of achieving a high degree of predictive accuracy should be conducted. 

In this Section, we present and discuss the results of our approach applied to a real 
dataset.

Our dataset consisted of information from approximately 100 dairy cattle farms in Italy, 
primarily from studies conducted over the past decade. The majority of these farms 
utilize intensive farming practices. The data collection focused on key inputs for Carbon 
Footprint analysis, such as production metrics like Fat and Protein Corrected Milk 
(FPCM) produced, herd composition, cultivated land area, and diet details, including 
the amount and origin of forage and concentrates, energy and fuel used, as well as 
the amount of CO2 eq. as output. By using our approach, we were able to increase 
the number of rows used for training by an order of magnitude, resulting in a significant 
reduction in prediction error.

Due to the complexity of the study, the dataset was decomposed into subdatasets 
to make it easier to manage and apply our approach. Specifically, the three subsets 
of data on soy meal, heard size, and total feed are used in the following to show the 
accuracy of our approach.

The characteristics of each dataset are listed below:

•	 soy meal dataset: Since the value of soy meal is a component that is influenced by 
use case components such as herd size, lactating cows, concentrate values, etc., 
this dataset results in a large number of heterogeneous inputs. It is also important 
to consider that some of the inputs have noise, due to the inherent limitations of 
the data collection methods employed.

Our approach

Results and 
discussion
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Figure 1. Decision tree representing our approach.

 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 1. Decision tree representing our approach. 

•	 heard size dataset: This value does not depend on an overly complex 
mathematical calculation and depends very much on the herd farm in question, 
so we use a dataset with many parameters that can help characterize the type of 
farm and thus estimate the possible herd size. These parameters are numerous 
as in the previous case, but they are easier to collect. In this dataset, elements 
such as the size of the farm, the cultivated area, the type of the farm, etc. are used 
as inputs.

•	 total feed dataset: This dataset is very similar to the previous one, there is not a 
complex mathematical relationship between the inputs and the output, it depends 



424

Machine learning for predicting environmental impacts

Proceedings ICAR Conference 2024, Bled

a lot on the way the farm is managed. However, unlike the previous dataset, many 
inputs are correlated with each other such as soy meal, concentrates, cultivated 
area, etc.

To evaluate a regression model, various techniques can be used.

In this work, we decided to use the Root Mean Square Error (RMSE). The RMSE 
represents the standard deviation of the prediction errors. These errors are a measure 
of the distance of the actual data from the regression line; RMSE is a measure of the 
spread of these residual values. In other words, it indicates the concentration of actual 
value around the line of best approximation. 

Table 1 shows the RMSE calculated on the three datasets. In order to facilitate a more 
comprehensive understanding and comparison of performance across the different 
datasets, the RMSE was normalized between 0 and 1.

In the following, we apply our approach to each dataset and can see that the resulting 
regression algorithm is equal to the best-performing one as shown in the table. 

Application of our approach to the SoyMeal dataset:

1.	 Are there missing values in the dataset? Yes.

2.	 Is the relationship between inputs and outputs approximately linear? No, the 
inputs of the dataset are many and there is no linearity between them and 
the output.

3.	 Is there a need to handle outliers or noise effectively? Yes. Since many inputs 
to the dataset come from measurements that by their nature may contain 
errors, this dataset definitely has presence of noise within it.

4.	 In the dataset small to medium-size and high-dimensional? No. In general, 
a dataset is considered “high-dimensional” when it has a large number of 
variables relative to the number of observations. 

5.	 Our approach suggests to use a Random Forest Regression model.

Application of our approach to the Herd Size dataset:

1.	 Are there missing values in the dataset? Yes.

2.	 Is the relationship between inputs and outputs approximately linear? No, the 
inputs of the dataset are many and there is no linearity between them and 
the output.

3.	 Is there a need to handle outliers or noise effectively? No. Since the inputs 
come from simpler and therefore more accurate data collection and gathering 
methods.

4.	 Is input selection a priority? Yes. It is not easy to choose appropriate inputs 
to predict this value, so it is preferred to have the regression algorithm do 
the input selection.

5	 Is there multicollinearity among input variables? No. The inputs are different 
from each other, and although there is a slight correlation among some of 
them, we can consider the dataset unaffected by multicollinearity

6.	 Our approach suggests to use a Lasso Regression model.
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Application of our approach to the Total Feed dataset:

1.	 Are there missing values in the dataset? Yes.

2.	 Is the relationship between inputs and outputs approximately linear? No, 
the inputs of the dataset are many and there is no linearity between them 
and the output.

3.	 Is there a need to handle outliers or noise effectively? No. Since the inputs 
come from simpler and therefore more accurate data collection and gathering 
methods.

4.	 Is input selection a priority? Yes. It is not easy to choose appropriate inputs 
to predict this value, so it is preferred to have the regression algorithm do 
the input selection.

5.	 Is there multicollinearity among input variables? Yes. Many inputs are 
correlated with each other such as soy meal, concentrates, and cultivated 
area. We can consider this dataset affected by multicollinearity,

6.	 Our approach suggests to use a Ridge Regression model.
 
 
Table 1. Normalized RMSE of three different datasets.  
 

Dataset/ 
ML model 

Linear Ridge Lasso Polynomial 
Decision 

tree 
Random 

forest 
Support 
vector 

Gradient 
boosting 

Soy Meal 0.118 0.116 0.116 0.114 0.114 0.105 0.121 0.115 

Heard Size 0.023 0.019 0.020 0.033 0.088 0.091 0.023 0.081 

Total Feed 0.066 0.058 0.061 0.086 0.09 0.08 0.059 0.076 

 

Table 1. Normalized RMSE of three different datasets. 

In this paper, we introduced a novel approach to address the challenge of predicting 
missing values within datasets, particularly within the context of environmental impact 
assessment in the livestock sector. Our approach was designed to select the most 
appropriate algorithm for predicting missing values in a dataset, taking into account 
its specific characteristics and requirements. By leveraging Machine Learning (ML) 
techniques, we sought to develop a systematic framework that could effectively handle 
missing data and enhance the completeness of the dataset.

To assess the effectiveness of our approach, we conducted testing using three distinct 
datasets, each representing different variables that influence the environmental 
impacts of cattle milk farming. Through rigorous testing and validation procedures, 
we assessed the performance of our approach across these datasets, measuring its 
ability to accurately predict missing values and improve dataset completeness. The 
results of the testing demonstrated the versatility and effectiveness of our approach, 
showcasing its capability to address missing data challenges across diverse datasets. 
Furthermore, to demonstrate the practical applicability of our approach in real-world 
scenarios, the three individual datasets were consolidated into a single comprehensive 
dataset tailored for environmental impact prediction, which enables us to explore and 
analyze environmental impacts across various domains. The application of the approach 

Conclusion
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to the unified dataset resulted in a significant increase in the size of the dataset by an 
order of magnitude, thereby enhancing its utility for environmental impact prediction.

The integration of ML techniques with LCA methodology represents a promising avenue 
for addressing data-related challenges in environmental impact assessment. The use of 
ML algorithms to predict missing values and enhance dataset completeness represents 
a promising avenue for overcoming common limitations encountered in LCA studies, 
such as incomplete or unreliable data. This synergistic approach enables more robust 
and comprehensive environmental impact assessments, thereby facilitating informed 
decision-making and sustainable practices across diverse sectors and industries.

In summary, this study underscores the potential of combining ML techniques with LCA 
methodologies to address data-related challenges and enhance the completeness and 
accuracy of environmental datasets. 
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Various strategies have been proposed to reduce enteric methane (CH4) emissions from 
ruminants, focusing on areas such as management, feeding strategies, feed additives, 
vaccination, and animal breeding. Among these, animal breeding currently shows the 
largest long-term potential, due to its low implementation costs, and permanent and 
cumulative effect. Nonetheless, implementing CH4 mitigation in breeding programs is 
still in its infancy. An important limitation to practical application has been the lack of 
phenotyping of CH4 emissions on individual cows, to estimate sufficiently reliable genetic 
parameters, which are required for breeding decisions. However, recent innovations 
have accelerated the collection of CH4 phenotypes. We describe the outcomes of a 
four year project in the Netherlands, that aimed to record CH4 emissions on 100 dairy 
farms, to be used in genetic parameter estimations. This dataset will be the basis 
for future national breeding value estimations for enteric CH4 of Holstein dairy cows, 
which will be implemented by the cooperative cattle improvement organization CRV. 
In the project, enteric CH4 emissions were measured by ‘sniffers’ that sample air 
from the feed bin of milking robots. The latest dataset included 110,188 weekly mean 
CH4 concentration (ppm) records on 7,749 cows from 72 farms, but data recording is 
ongoing. Several analyses have been performed already, with the following objectives: 

1.	 Define a CH4 trait from the raw concentration measurements.

2.	 Estimate heritabilities and repeatabilities.

3	 Investigate different recording schemes.

4.	 Investigate the relationships between CH4 and other breeding goal traits.

To date, the research output of the project showed that the phenotype for weekly 
mean CH4 concentration has a moderate heritability of 0.17 ± 0.04 and a repeatability 
of 0.56 ± 0.03. As the sniffers only measure concentrations, and not the total grams of 
CH4 emitted by breath, genetic correlations were estimated between the weekly mean 
CH4 concentration phenotype and a weekly mean CH4 production (g/day) phenotype. 
The latter was recorded by GreenFeed units on 797 cows from 16 farms (4 overlapping 
with sniffers). The genetic correlation was 0.76 ± 0.15, indicating that selection for 
lower concentrations will result in a reduction of total CH4 production output in g/day. 

Abstract
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Furthermore, with the novel dataset we confirmed that the genetic variance changed 
over a lactation. This has implications for recording schemes, and we showed that short 
recording of CH4 during the first or last weeks of recording can result in lower genetic 
gains than predicted from the reliability, when modelled without using random genetic 
and permanent environmental regressions over the lactation. In the last stage of the 
current project, genetic relationships among CH4 concentration, DMI, bodyweight, and 
milk yield traits were estimated, which are required to set up the selection index that 
includes CH4 mitigation. The results show low genetic correlations between CH4 and: 
dry matter intake (0.06 ± 0.10), body weight (-0.04 ± 0.10), and milk yield (-0.04 ± 0.08). 
The developed dataset and models, are currently used to set up national breeding 
value estimation for CH4 emissions of dairy cows in the Netherlands. Furthermore, the 
dataset will be used in additional research projects in the coming years, that aim to 

1.	 Investigate the relationship with the microbiome.

2.	 investigate the impact of selecting using the developed phenotype(s).

3.	 Investigate incentives for farmers to use the CH4 breeding values.

4.	 Proof the impact of change in breeding values at farm and national level. 

This comprehensive approach not only improves our understanding of breeding for 
lower enteric CH4 emissions, but also integrates this knowledge into practical breeding 
strategies for sustainable dairy farming.

Keywords: methane emissions, sniffers, dairy cows, quantitative genetics, animal 
breeding. 
Presented at the ICAR Anual Conference 2024 in Bled at the Session 11: Methane 
Emission-Free Communications: Genetics, Environmental, and Life Cycle 
Assessment Studies

In the Netherlands, a pledge has been made to reduce greenhouse gas emissions 
by 55% in 2030 compared to the year 1990, and to be carbon neutral by 2050 
(Communication from the Directorate-General for Climate and Energy, 2022). A large 
contributor to national emissions is agriculture, from which a part of the emissions stem 
from ruminants, such as dairy cows (Van Bruggen et al., 2023). Dairy cows produce CH4 
during enteric fermentation of feed in the rumen, which is released through breath and 
belching. That animal breeding can play a role in reducing the environmental impact of 
dairy farming is becoming increasingly recognized. Here, we describe the outcomes of 
a four year project in the Netherlands, that aimed to record CH4 emissions on 100 dairy 
farms, to be used in genetic parameter estimations. This dataset will be the basis for 
future national breeding value estimations for enteric CH4 of Holstein dairy cows, which 
will be implemented by the cooperative cattle improvement organization CRV.

To enable selective breeding, phenotypes for CH4 were recorded with ‘sniffers’. 
Sniffers are a comparatively cheap method to record large numbers of cattle, that 
are increasingly used to phenotype cows for genetic improvement (Garnsworthy et 
al., 2019; Madsen et al., 2010). Nonetheless, because CH4 recorded with sniffers is a 
relatively new trait, many questions remain on how to apply the recorded emissions 
in genetic evaluations. For example, the measurements are faced with inaccuracies, 
which should be accounted for by taking repeated measurements and appropriate 
modelling (Bovenhuis et al., 2018; Wu et al., 2018), and the relationships with other 
economically important breeding goal traits are still unclear (Hossein-Zadeh, 2022).

Introduction
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In our four year project, we have collected over 100,000 weekly mean CH4 concentration 
(ppm) measurements on 7,749 cows from 72 farms. Here, we summarise the genetic 
parameters that were estimated from this dataset, including genetic correlation 
estimates with other breeding goal traits. This demonstrates the progress made 
towards accomplishing our objective, which is to provide meaningful breeding values 
for methane mitigation in the Netherlands.

The latest dataset included 110,188 weekly mean CH4 concentrations (CH4c) records 
from 7,749 cows from commercial dairy 72 farms in the Netherlands. Data were 
collected between 2019 and 2023, and previously described in (van Breukelen et al., 
2024). In short, non-dispersive infrared sensors, called sniffers (WD-WUR v1.0 and 
v2.0, manufactured by Carltech BV), were installed with a tube leading into the feed bin 
of the milking robot (AMS), and continuously recorded CH4 (0 to 2,000 ppm) and CO2 
(0 to 10,000 ppm) concentrations. The recorded data was filtered to exclude biologically 
improbable records, and then matched with AMS visit information to determine the 
cows’ IDs. Thereafter, the data was averaged per AMS visit, including records from 
the first up to the fifth minute of milking..

Various phenotypes defined from the sniffer concentration measurements were 
analysed, including visit, daily, and weekly means, on: the mean, median, log, and  
CH4/CO2 ratio. From the data, genetic parameters were estimated using univariate 
fixed repeatability models and a random regression repeatability model with ASReml 
4.2  (Gilmour et al., 2015), and genetic correlations were estimated using pairwise 
bivariate models. All cows used for the genetic analyses had pedigree information, 
and most cows were genotyped. Several genetic analyses were performed, with 
the following objectives: 1) estimate heritabilities and repeatabilities (from various 
CH4 traits), 2) investigate different recording schemes, including changes in genetic 
parameters over a lactation, and 3) investigate the phenotypic and genetic relationships 
between CH4 and other breeding goal traits.

The estimated heritabilities and repeatabilities were used to calculate the reliability 
of breeding values, which was used to determine the number of daughter records 
needed to reach breeding value publication thresholds. For details on the datasets 
and methods used see van Breukelen et al. (2022) and van Breukelen et al. (2024).

To determine the applicability of CH4c as an indicator for the reduction of total 
CH4 emissions in grams/cow/ day, genetic correlations were estimated with 
CH4  measurements from the more accurate GreenFeed, as GreenFeed units are 
considered the gold standard for on-farm recording of individual cow CH4. Methane 
was recorded by GreenFeed units at 16 farms (of which four also had sniffer recording), 
and the analysed dataset included GreenFeed measurements in 822 cows [of which 
184 cows also had sniffer records, for details see van Breukelen et al. (2023)].

Material and 
methods

Genetic analyses

Genetic correlations 
with GreenFeed 
recorded cows
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In addition, genetic correlations were estimated for first parity cows between CH4c, 
and: milk yield (MY), protein yield (PY), fat yield (FY), protein percentage (P%), fat 
percentage (F%), body weight (BW), and dry matter intake (DMI). The number of 
weekly records and cows for each trait were: 8,891 cows with 179,469 records for 
MY, 8,889 cows with 139,295 records for PY, 8,889 cows with 139,328 records for 
FY, 5,919 cows with 119,523 records for BW, and 4,998 cows with 87,306 records for 
DMI. The traits P% and F% were calculated as PY or FY, respectively, divided by MY. 
The genetic correlations were estimated using pairwise bivariate models, including 
fixed effects for: an interaction between farm, year and week of measurement for the 
CH4 and CO2 traits only, an interaction between farm and experimental treatment for 
all traits except CH4 and CO2, a second order Legendre polynomial on age at calving 
in days, a third order Legendre polynomial on DIM, and an interaction between the 
second breed with a second order Legendre polynomial on the fraction of the second 
breed, and a random genetic and permanent environmental effect. The residual and 
permanent environmental covariances were fixed to zero for the runs including DMI 
and a CH4 or CO2 trait, because of the small number of cows with records on both DMI 
and a greenhouse gas trait.

The research output of the project showed that the phenotype for weekly mean 
CH4 concentration has a moderate heritability of 0.17 ± 0.04 and a repeatability of 
0.56 ± 0.03. As the sniffers only measure concentrations, and not the total grams of CH4 
emitted by breath, genetic correlations were estimated between the weekly mean CH4 
concentration phenotype and a weekly mean CH4 production (g/day) phenotype. The 
latter was recorded by GreenFeed units on 797 cows from 16 farms (four overlapping 
with sniffers). The genetic correlation was 0.76 ± 0.15, indicating that selection for lower 
concentrations will result in a reduction of total CH4 production output in g/day. Other 
phenotypes that were defined from sniffer measurements (i.e. median concentrations, 
log transformed concentrations, and traits defined from the maximum concentrations or 
peaks in concentrations) had high genetic correlations with mean CH4 concentrations 
(≥0.78), apart from the genetic correlations with the CH4/CO2 trait, which was negative.

Furthermore, a comparison was made between genetic parameter estimates for 
CH4 emission from a fixed regression repeatability model and a random regression 
(RR) model. The RR model, allowed for varying genetic variances and covariances 
over a lactation. The results showed that the heritability was highest mid lactation (on 
average 0.17 ± 0.04), and genetic correlations between lactation stages were high 
(0.34 ± 0.36 to 0.91 ± 0.08). Permanent environmental correlations deviated greatly over 
a lactation and ranged between -0.73 ± 0.08 and 1.00 ± <0.01, which highlights that 
it is most appropriate to model CH4c with a RR model including a random permanent 
environmental effect. With a large number of full-lactation daughter CH4 records for 
each bull, the reliability was similar for the fixed and RR models. However, when data 
were only available for shorter recording periods at the beginning and end of lactation, 
using the fixed regression model led to up to a 28% reduction in reliability for bulls. 
Assuming the fixed model when the true (co)variance structure is reflected by the RR 
model, more than twice as long recording from the start of lactation was required to 
achieve maximum reliability for a bull. Therefore, applying an overly simplistic model 
could lead to insufficient recording and lower than predicted genetic gains based on 
the estimated reliability. If all cows would only be recorded for a small period of time, 
for example three weeks, it is preferred to record cows in mid lactation as this would 
yield the highest reliabilities. In addition, to reach the Dutch breeding value publication 
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threshold of 50% for sires, it is recommended to record at least 25 visits or 5 weeks, 
from 10 daughters per sire.

In the last stage of the current project, genetic relationships among CH4c and important 
breeding goal traits were estimated. Results show low genetic correlations between 
CH4c and: MY (-0.04 ± 0.08), PY (<0.01 ± 0.08), FY (0.12 ± 0.08), P% (0.10 ± 0.09), 
F% (0.21 ± 0.08), BW (-0.04 ± 0.10), and DMI (0.06 ± 0.10). This indicates that it is 
possible to breed for reduced CH4 concentrations, while continuing to improve, for 
example, milk production or fat yield.

The results coming from this project, will be used to set up national breeding value 
estimation for CH4 emissions of dairy cows in the Netherlands, from which first breeding 
values are expected in 2025. Furthermore, the dataset will be used in additional 
research projects in the coming years, that aim to 1

1.	 Investigate the relationship with the microbiome.

2.	  Investigate the impact of selecting using the developed phenotype(s).

3.	  Investigate incentives for farmers to use the CH4 breeding values. 

4.	 Proof the impact of change in breeding values at farm and national level. 

Animal breeding is an effective approach to reduce agricultural emissions, that can 
contribute to reaching greenhouse gas targets. To phenotype large numbers of cows 
on commercial dairy farms for breeding programs, sniffers provide a cost-effective 
method of measuring gas concentrations. In our four year project, we have shown 
that CH4 concentration traits have a moderate heritability, have a favourable high 
genetic correlation (0.76) with CH4 production recorded by Greenfeed units, and the 
CH4 concentrations measured with sniffers have low genetic correlations with milk 
production traits, BW and DMI. The results coming from the project not only improve 
our understanding of breeding for lower enteric CH4 emissions, but are also used to 
integrate this knowledge into practical breeding strategies for sustainable dairy farming.

The research leading to these results was part of the TKI Agri and Food project 
LWV19155 (Wageningen, the Netherlands) and the partners CRV (Arnhem, the 
Netherlands) and FrieslandCampina (Amersfoort, the Netherlands). The work was 
initially supported by the Climate Approach Project, funded by the Dutch Ministry for 
Agriculture, Nature and Food Quality (LNV, The Hague; project number BO-53-003). 
The authors gratefully acknowledge the farmers for participating in this research.
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This work aims to describe the holistic approach for monitoring the environmental 
sustainability that the Italian Holstein, Brown, and Jersey Breeders Association 
(ANAFIBJ) is implementing. Since 2015, ANAFIBJ has been setting up a wide range 
of environmental strategies to record data and to develop tools that meet community 
and farmer needs on mitigation climate change. In 2018, ANAFIBJ started collecting 
innovative data for each young calf housed at the experimental farm of ANAFIBJ. 
Several phenotypes, for over 200 young bulls, were recorded using advanced 
technologies, including the GreenFeed system (C-Lock Inc., Rapid City, SD, USA) and 
the Roughage Intake Control system (Hokofarm Group, Marknesse, The Netherlands). 
A new pipeline was developed to incorporate these new traits into the routine 
database maintained by ANAFIBJ, which is updated daily. At the population level, 
the Association formed a Consortium with various stakeholders, including University 
Experimental Farms, Commercial Farms, Universities, and Private Companies for 
recording routine environmental traits recorded on the Holstein female population. 
Methane emission records, from the GreenFeed system and the Sniffer type systems, 
milk-spectral records, from mid-infrared spectroscopy of milk labs, ruminal content, 
and microbiota composition, collected from key individuals on the population, will feed 
into the central ANAFIBJ data flow system. This will allow in the near future to set-up 
a genetic evaluation for these innovative traits and build up stronger cooperation at 
the international level. The Life Cycle Assessment (LCA) has been applied to several 
dairy herds enrolled in the national herd book. Now, LCA predictions can be made 
for all national dairy herds using the routinely recorded data in the ANAFIBJ national 
database. More herds are expected to have LCA recorded scores in the future.  Further, 
an innovative report, named the “green passport”, was generated to summarize the 
methane emissions and feed and water intake records of each bull housed in the 
experimental farm managed by ANAFIBJ. Each tool plays a pivotal role in allowing 
farmers across the country to assess the environmental impact of their herd and inform 
decisions regarding herd management.
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Enteric methane emissions from ruminants are a major contributor to atmospheric 
greenhouse gas accumulation. Accurate measurement of methane production in 
ruminants is crucial to not only develop reliable national greenhouse gas emission 
inventories, but also evaluate mitigation strategies for methane emissions. Measuring 
actual enteric emissions in livestock is complex, expensive and time consuming. Many 
different research and industry bodies globally are investigating the feasibility and 
accuracy of a range of different techniques for recording enteric methane emissions 
and to create an automatic data streamline to storage data.

Available on market there are two different ways to perform an environmental 
sustainability evaluation: direct methods and indirect one. In the first category there are 
many different instruments as respiration chamber, portable accumulation chamber, 
SF6, breath sampling during milking and feeding, Greenfeed® and laser systems. 
Indirect methods or proxies are predicted indexes, milk spectra records (MIR), ruminal 
microbiome data and LCA. Generally, these two methods are considered separated. 
In the Italian holistic approach these two methods need to be integrated because 
direct data are crucial to validate proxies, while proxies are necessary to extend an 
environmental sustainability evaluation on large scale. 

•	 Objective of this project areCollect GHG emissions data using different methods:

•	 Greenfeed®

•	 Moologger®

•	 Collect innovative traits data:

•	 Milk Spectra Records (MIR)

•	 Ruminal Microbiome data

•	 Validate proxies;

•	 Developtools, certifications and services that meet community and farmers need 
of mitigation climate change;

•	 Set-up a genetic evaluation also including innovative traits.

The first step was in 2019 with the collection of methane, carbon dioxide emissions, 
feed intake and water intake data into ANAFIBJ Genetic Center on Italian Holstein 
young bulls candidates to Artificial Insemination in Italy.

Two years later, in 2021, a daily automatic data pipeline was created to incorporate 
new traits into the routine database maintained by ANAFIBJ. 

In 2023 the Italian Sustainability Consortium (ISC) was founded including University, 
Experimental Farms, Research Centers and Private Companies. To be part of the 
project, key farms must have some features: they have already been equipped with 
an Automatic Milking System (AMS) or an Automatic Feeding System (AFS) and must 
be registered. ANAFIBJ into these key farms will install some additional equipments,as 
Greenfeed® or Moologger. This structure and organization allow to collect a large 
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variety of data: CH4 emissions from GreenFeed or Moologger, type traits, milk spectra 
records, ruminal microbiome data and weight.

In 2024 an automatic data streamline has been created to incorporate Consortium 
traits into the routine database maintained by ANAFIBJ.

Up today, ANAFIBJ database in composed of the following data collected on 272 Italian 
Holstein young bulls:

•	 36,653 CH4 records from Greenfeed®.

•	 559,800 feed intake records.

•	 6,491 water intake records.

•	 2,181 BCS records.

•	 6,543 biometric measures records.

•	 2,315 weight records.

In addition, some data are available also for Italian Holstein cows:

• 	 25,400 CH4 records from Moologger®.

•	 66,864 CH4 records from Greenfeed®.

•	 108,624 feed intake records.

•	 2,997 weight records.

•	 2,853 rumination records.

For each animal, male and female, as Italian Holstein Green Passport is produced. 
This passport can be considered as a animal functionality and environmental impact 
report. At the moment in the report are reported only phenotypic data. Phenotypic 
data are compared to average phenotypic data of the population. In the near future 
indexes will be includes.

For each farm enrolled in the project an environmental sustainability evaluation using 
LCA approach is performed. At the moment in the LCA evaluation, average predicted 
methane emission index is used, but in the near future it will be replaced by direct data.

Data collection on key-farms is crucial to create a national inventory about sustainability 
traits (direct and proxies) and to set up a genetic evaluation. Of course, data collection 
in commercial farms is going to be enhanced. LCA in a key-tool to perform high-quality 
technical assistance using an holistic approach.
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In Denmark, a carbon emission tax in the agricultural sector will be implemented to 
meet the 2030 greenhouse gas reduction target (Skm.dk, 2024). Enteric methane (CH4) 
from cow digestion is a significant contributor, leading to interest in genetic selection 
for low CH4 emitting dairy cows. Developing a genetic model for methane emission in 
dairy cattle requires a comprehensive database of individual CH4 measures from many 
cows. This requires affordable, farm-installable equipment with high measurement 
capacity. Sniffers based on the Guardian NG CH4 and CO2 sensors, measuring gas 
concentrations in robotic milking systems (AMS), are used for this purpose in Denmark.

Currently, (September 2024) we have collected methane records from 15.000 dairy 
cows in 40 herds based on records from 38 sniffers with a two-channel multiplex 
setup. Installation and maintenance require ongoing technical support and daily data 
monitoring. Due to the high volume of daily data, an automated pipeline is needed to 
monitor, clean, and ensure high-quality data for CH4 phenotypes. Equipment errors 
are detected based on data streams from AMS and sniffer, and measurements are 
matched to individual cows, using a CO2 concentration-based filter which is also used 
to correct for potential time drift.

To filter environmental noise, data is split into baseline readings, based on empty 
periods in AMS and cow data where a cow is milked in the AMS. Both baseline readings 
and cow data are pruned. Reliable gas concentrations during milking are adjusted for 
baseline levels, and a head lifting criteria is added to discard records where a cow most 
likely does not have the head in the feed bin. Phenotypes such as CH4 concentration 
and CH4/CO2 ratio are calculated. Additional information, such as milk yield, can be 
used to compute other methane traits. These phenotypes facilitate the development 
of genetic models for reducing methane emissions in dairy cattle.

Keywords: Methane emission, dairy cows, genetic selection, sniffer, data pipeline. 
Presented at the ICAR Anual Conference 2024 in Bled at the Session 11: Methane 
Emission-Free Communications: Genetics, Environmental, and Life Cycle 
Assessment Studies
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In Denmark a carbon emission tax for the agricultural sector increasing toward € 100 per 
ton CO2e by 2035 has been agreed on by the Danish Government and key stakeholders 
to meet the Denmark’s 2030 climate goals. Methane (CH4) released from dairy cows’ 
enteric digestion constitute a substantial portion of greenhouse gas emissions (Beach 
et al., 2015, Charmley et al., 2016). There are many methane mitigation options such 
as production intensification, dietary manipulation and selection of low CH4 producing 
animals (Beauchemin et al. 2022). There is a major focus on feed additives aimed at 
reducing enteric methane (e.g. Honan et al, 2022, Majgaard et al., 2024). Also, genetic 
selection of cows with low CH4 emission pr produced unit of milk and meat has been 
investigated (for review see Lassen and Difford, 2020).

To facilitate the development of a genetic model and conduct genetic evaluations 
for methane emission in dairy cattle it is necessary to have access to large-scale 
recording of methane emissions, to establish a comprehensive database with individual 
CH4 and CO2 measures. Sniffers, installed in automatized milking systems (AMS) at 
private farms have a high capacity to measure CH4 and CO2 concentrations in the 
exhaled air continuously during milking. The sniffer is a relatively cost-efficient system 
to measure gas emissions, that can easily be upscaled. Although sniffer data are 
valuable for the development of genetic models, they often present challenges in its 
raw form and require substantial processing and filtering.  Currently, sniffers are not 
integrated with AMS software synchronization with cow-ID from milking system and 
potential synchronization of time is required. In addition, early detection of equipment 
errors and filtering for environmental noise is essential. The following text will shortly 
describe how we measure methane with the sniffer in a Danish setup, our current data, 
and cleaning of data used to form methane phenotypes 

The sniffer units consist of a CH4 sensor (Guardian NG, Edinburgh Instruments, UK) 
and a CO2 sensor (Gascard, Edinburgh Instruments, UK). Air and cows’ breath is led 
into the sensors from the feed-bins in the AMS through a de-humidifier tube (Nafion, 
https://www.permapure.com/environmental-scientific/products/gas-sample-dryers/
md-gas-dryers/) using the pump in the Guardian CH4 unit. Concentrations of CH4 and 
CO2 are recorded in volume percent units. As dust may block the inlet pipe a “sneezer” 
system is retrofitted, so as to clean the inlet filter (Festo, Pneumatic silencer, Festo, 
UC-QS-6H, 6mm)) by back-flushing part of the inlet pipe with compressed air from the 
AMS. The sneezer valve (Pneumatic control valve, SMC, SYJA712-01F) is triggered 
by the “exit gate” pressure so that the filter is cleaned for a few seconds when the cow 
exits the AMS. The instrument runs continuously giving one record of CH4 and CO2 
concentrations per second. The sniffers are equipped with a two-channel multiplex 
setup that makes it possible to switch between measurements in two AMS with a 
pre-defined intervall.

Introduction

The Danish sniffer

 
Tabe 1. Number of cows with individual methane records in the Danish methane database. 

Breed Cows 
Holstein ~8,000 
Jersen ~3,000 
Red ~2,000 
Crossbreds ~1,000 

 
  

Tabe 1. Number of cows with individual methane records in the Danish 
methane database.
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By September 2024 the database with methane records consists of about 15.000 dairy 
cows from 40 herds with methane records. Models must be developed for all major 
dairy breeds in Denmark, therefore gas concentrations are measured in more breeds 
as summarized in table 1.

The data system comprises two distinct pipelines for each milking unit, processing time 
series from both the AMS milking unit and the gas sniffer. The AMS pipeline collects cow 
identification data, milking details, and gate status to track the start and end of milking 
sessions. This data is downloaded weekly from the farmers’ management system. 
The sniffer pipeline, operating on its own server, records CH4 and CO2 concentrations. 

Data from the AMS milking unit and the sniffer are combined into a single processing 
pipeline, where key operations are executed. This integrated pipeline carries out 
critical tasks, including monitoring data flow, detecting and correcting equipment errors, 
cleaning data, estimating background gas concentrations, and analyzing cow data. 
These steps result in the calculation of condensed phenotypes, which are then stored 
as a single record for each milking event. This streamlined approach ensures that data 
from both the AMS system and gas sniffers is processed efficiently and consistently, 
as illustrated in Figure 1. 

Animal data

Figure 1. Fig. Diagram of experimental data acquisition system and processing pipeline. Top-left, AMS 
Milking unit where all measurements occur and milking data is acquired. Below, the sniffers where CH4 
and CO2 is measured. Data processing follow the arrows, and the pipeline end-product is the phenotypes 
stored in the emissions database.

 

 

Figure 1. Fig. Diagram of experimental data acquisition system and processing pipeline. Top-left, AMS 
Milking unit where all measurements occur and milking data is acquired. Below, the sniffers where 
CH4 and CO2 is measured. Data processing follow the arrows, and the pipeline end-product is the 
phenotypes stored in the emissions database. 
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Daily monitoring ensures smooth connection and reliable data transfer, with continuous 
tracking of cow visits in the AMS, maximum and mean gas values, as well as standard 
deviations for gas concentrations.

Several key issues arise with the sniffer techniques, including data association 
and synchronization, reliability detection, and significant embedded noise levels in 
measurements. To address these challenges, we employed the methods proposed 
by Milkewych et al. (2022), which utilize a matched filter approach based on milking 
times and CO2 gas concentrations to estimate potential time discrepancies and identify 
reliable data. These methods are grounded in the principles of linear filtering theory. 
The algorithmic implementation of this approach enables rapid and efficient automated 
data processing, resulting in an assessment of the proportion of reliable data. A high 
percentage of unreliable data may indicate equipment malfunction, necessitating a 
thorough check-up of the sniffer. 

The estimation of background gas concentrations is outlined in Løvendahl et al. (2024). 
Reliable data are categorized into baseline measurements taken when the AMS is 
unoccupied (idle), and emissions data recorded during cow usage. Idle periods of the 
AMS serve as the basis for calculating background gas concentrations. To mitigate 
potential carry-over effects from previous cows and address issues related to imperfect 
data synchronization, specific restrictions on the recording window are implemented 
to minimize edge effects. A baseline value is calculated for each restricted recording 
window, using data from 60 seconds after the start to 30 seconds before the end, with 
a minimum duration of 3 minutes. The diurnal effect of baseline is modelled using 
Fourier series as harmonics (Lassen and Løvendahl, 2016).)

For cow visits, the recording window is limited to a range of 30 to 300 seconds. 
Concentration values that significantly exceed the baseline are used as indicators 
to ensure that the cows’ heads are adequately positioned near the sniffer’s air inlet.

The mean values of the selected gas records and their ratios form the basic response 
phenotypes. Additionally, other phenotypes can be generated when data such as milk 
yield (ECM) and dry matter intake (DMI) are available. These phenotypes include 
methane production (g/day), methane intensity (g/day/kg ECM), and methane yield 
(g/day/kg DMI), as described by Manzanilla-Pech et al. (2021).

Developing a genetic model for low-emission dairy cows requires a comprehensive 
database of individual CH4 measures. Utilizing advanced sniffers integrated with 
automated milking systems (AMS), we have collected extensive methane emission 
data from 15,000 dairy cows across 40 herds. 
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By implementing automated pipelines for data processing, we ensure the maintenance 
of high-quality measurements through rigorous monitoring and error detection. The 
analysis of background gas concentrations, along with the establishment of key 
phenotypes for methane emissions, paves the way for effective genetic models and 
selection strategies aimed at reducing enteric methane emissions
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The agricultural sector in Ireland contributes 38.4% of total greenhouse gas emissions 
and 71.2% of the agriculture greenhouse gases is generated from methane associated 
with livestock production. Mid-infrared (MIR) spectral data, which are routinely 
collected in a fast, cheap, and non-disruptive way, have been used to predict 
individual cow methane emissions in Canada, Belgium, France, Netherlands, and 
Ireland. The objective of this study was to validate, using data from the 2023 calendar 
year, predictions of enteric methane from milk MIR developed in Ireland based on 
data from the years 2020 to 2022.The Irish prediction model was developed using 
93,888 individual spot measures of methane (i.e., individual samples of animal’s breath 
when using a GreenFeed technology) from 277 cows. T

he enteric methane phenotype was based on the average of at least 20 individual spot 
measures taken over a 6-day period flanking each side of the milk sample with an 
associated milk spectral data. Predictions were based on a neural network algorithm 
populated with information on the MIR spectra, milk yield, and days in milk; the 
correlation between the actual and the predicted values in that 2020 to 2022 data varied 
from 0.68 to 0.75 in cross-validation, and from 0.55 to 0.71 in leave‑one‑experiment 
treatment-out validation. The validation dataset used in this study for the 2023 calendar 
year consisted of 45,196 individual cow spot methane measures from 157 cows which 
were collapsed into 1,715 methane records with associated milk MIR; none of the cows 
in the validation population were in the dataset used to develop the predictive model. 
The correlation between the real and the predicted values, the root mean square error 
(RMSE), and the ratio of performance to deviation were 0.38, 79.76 g/d, and 0.69, 
respectively. 

The validation dataset was then stratified by estimated daily methane as the highest 
10% emitting cows and the lowest 10% emitting cows. The mean (standard deviations) 
actual methane emitted by the cows predicted from the MIR to be the highest 10% 
emitter cows was 417.39 g/d (31.91 g/d), while that of those predicted to be the lowest 
10% emitters was 220.56 g/d (26.69 g/d); the respective predicted mean methane of 
those two groups of animals was 402.59 g/d (27.73 g/d) and 358.26 g/d (27.00 g/d), 
respectively. Results from the present study indicated a relatively poor prediction 
accuracy in estimating individual cow methane emissions in a subsequent year. 
Nonetheless, differences in the actual mean methane between groups of cows predicted 
to be divergent in methane materialised. Hence, while individual animal predictions 
was poor, actual differences in enteric methane emissions differed between groups 
of animals stratified on predicted methane emissions.
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Irish agriculture is responsible for 38.4% of national greenhouse gas emissions (GHG) 
and methane from enteric fermentation accounts for the 71.2% of these emissions 
(EPA, 2023). Nonetheless, the total amount of GHG emissions needs to be reduced by 
25% by the year 2030. Strategies which will achieve this deliverable without impacting 
global are required. Environmental concerns from consumers necessitate future food 
production systems to demonstrate they are capable of accurately quantifying and 
mitigating their environmental footprint. Mitigating methane emissions from dairy 
cows presents a complex challenge due to the biological processes involved in rumen 
digestion. Different strategies have been proposed to reduce cow methane emissions 
such as improving feed management (e.g. by adjusting the composition and timing of 
feed; Hristov et al., 2013), inclusion of feed additives into the diet (Patra, 2012), genetic 
selection (Pinares-Patiño et al., 2013), and rumen manipulation (e.g. inoculating the 
rumen with specific microbes or introducing methanogen inhibitors; Eugène et al., 
2015). Nonetheless, methods for estimating methane emissions are needed, ideally 
at an individual cow level, as they would allow for an assessment of methane output 
while also permitting to investigate methane-reducing strategies.

Mid-infrared (MIR) spectroscopy is a technology routinely applied to all bulk tank and 
individual animal milk samples to quantify the concentration of many milk components 
(e.g., fat, protein and lactose) in the milk sample. Moreover, it was successfully used to 
predict, with reasonable accuracy, the enteric methane emissions of individual animals 
(Vanlierde et al., 2015; Shadpour et al., 2022; Dehareng et al., 2012). Nonetheless, 
these previous studies were generally small in size (from 11 cows – Dehareng et al., 
2012; to 202 cows - Shadpour et al., 2022), often limited to cows (likely) fed indoors 
(Shadpour et al., 2022; Wang and Bovenhuis, 2019; Dehareng et al., 2012; van Gastelen 
et al., 2018; Coppa et al., 2022) or measured over a relatively short period of time 
(Vanlierde at al., 2018; van Gastelen et al., 2018). In Ireland, a methane emissions 
prediction equation was developed in 2023 (McParland et al., 2024) using data collected 
between the years 2020 to 2022 from 277 grazing dairy cows. The aim of this study 
was to validate this Irish methane prediction equation using data collected during the 
2023 calendar year.

The calibration dataset included data from 93,888 individual spot measures of methane 
(i.e., individual samples of animal’s breath when using a GreenFeed technology) 
from 277 dairy cows collected between the years 2020 and 2022. Different methane 
phenotypes were investigated and the one which produced the most accurate prediction 
results was based on the average of at least 20 individual spot measures taken over 
a 6 day period surrounding each side of the milk sample (McParland et al., 2024). 
The quantified phenotype was then merged with the same cow’s daily average milk 
spectrum quantified as the milk yield weighted average of the milk spectrum originating 
from an evening milking and the milk spectrum originating from the following morning 
milking. A total of 531 wavelengths were used for the analyses (i.e., after discarding 
the water regions). The mean and standard deviation of the calibration dataset was 
324.0 g/d and 94.0 g/d, respectively. The prediction equation was developed using a 
neural networks algorithm that was populated with data on the MIR spectra, milk yield, 
and days in milk. The R package brnn (Perez Rodrigez and Gianola, 2020) was used to 
develop the prediction equation, and the default tuning parameters were chosen, which 
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included two hidden layers and a Bayesian regularization to the input layer to improve 
generalizability. Prediction results in the calibration dataset resulted in a correlation 
between the actual and the predicted values of 0.68 to 0.75 in cross-validation and 
from 0.55 to 0.71 in leave-one-experiment treatment-out validation. 

A further 45,196 individual spot methane measures from 157 cows were collected during 
the 2023 calendar year. These records were collapsed into 1,715 daily methane records 
with associated daily weighted average milk MIR; none of the cows in the validation 
population were in the calibration population. The mean and the standard deviation in 
the validation dataset was 313.20 g/d and 55.52 g/d, respectively.

The correlation between the real and the predicted values, the root mean square error 
(RMSE), and the ratio of performance to deviation when validated in the 2023 data 
were 0.38, 79.76 g/d, and 0.69, respectively. The actual versus the predicted methane 
emissions values are in Figure 1. 

The actual and predicted lactation profile for methane is in Figure 2. Actual daily emitted 
methane increased as the lactation progressed until week22 after which it declined; in 
contract, predicted daily methane reduced as the lactation progressed. 

The correlation between the actual and the predicted methane emissions was then 
investigated within stage of lactation, where each stage was approximately 60 days in 
duration. The correlation between the actual and the predicted methane emissions was 
always 0.50 for the records collected between 5 to 59 DIM, between 60 and 119 DIM, 
and between 120 and 179 DIM, but weakened to 0.46 between 180 and 239 DIM and 
weakened further to 0.27 post 240 DIM.

Validation dataset

Results

Figure 1. Actual (x-axis) versus predicted (y-axis) methane emissions (g/d).

 

 
 
Figure 1. Actual (x-axis) versus predicted (y-axis) methane emissions (g/d). 
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The validation dataset was then stratified by predicted daily methane as the highest 10% 
emitting cows and the lowest 10% emitting cows. The mean actual methane emitted 
by the cows estimated to be the highest 10% emitter cows was 417.39 g/d, while 
that of those estimated to be the lowest 10% emitters was 220.56 g/d; the respective 
predicted mean methane of those two groups of animals was 402.59 g/d and 358.26 
g/d, respectively.

Quantification of methane emissions is essential to study the effect of different diets 
or the inclusion of feed additives on cow methane emissions, as well as to include 
methane emissions as a trait in national genetic evaluations. The reference method 
used for the quantification of methane emission are the respiratory chambers, which 
may not be a good reflection of the actual enteric methane emissions in grazing cows, 
since the cows are removed from their natural environment. Indeed, activities like 
walking, the grazing process itself (i.e., diet selection when grazing pasture), and the 
influences of weather conditions on grass quantity and quality are not detected with 
the respiratory chambers. 

Therefore, alternative approaches to quantify methane emissions in the grazing 
system need to be explored. The utilization of milk MIR spectral data coupled with 
previously developed prediction equations generated reasonably accurate predictions. 
Nonetheless, the developed equations have to be properly validated before being 
used. Indeed, Wang and Bovenhius (2019) reported a coefficient of determination of 
0.49 when methane emissions were quantified from MIR in dairy cows using random 
cross-validation, but a coefficient of determination of 0.01 when methane emissions 
were quantified using block cross-validation, with farm as blocks. As prediction 
equations are generally generated using data collected in a relatively small number of 
farms (often research farms), the developed equations need to be able to accurately 
quantify methane emissions for farms with no records in the calibration dataset. The 
validation dataset used in the present study included records collected from cows not 
included in the calibration dataset, collected in the successive year to the records in 

Figure 2. Actual (black) and predicted (red) methane emissions lactation profile.

 

 
 
Figure 2. Actual (black) and predicted (red) methane emissions lactation profile. 
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the calibration dataset, and majority of the data in the validation dataset were collected 
in a farm which was not included in the calibration dataset. While the accuracy metrics 
used to assess the model predictive ability were acceptable, the mean of the predicted 
methane emissions of the high 10% emitting cows was different (P<0.05) to the mean 
of the predicted methane of the low 10% emitting cows. 

The results from the present study demonstrated that even if the actual methane 
emissions value for the different cows was not accurately quantified, groups of cows 
(i.e., high and low emitting cows) can be correctly identified. Therefore, the methane 
emission phenotypes quantified using the milk MIR spectra and the already developed 
equation could potentially be used for selection of lower emitting cows.
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Genetic selection for reduced methane emissions from dairy cows has received 
increasing attention in the last decade, but this requires a large reference population. 
As such, a significant amount of research has been carried out to explore easy and 
cost-effective predictors of measure methane emissions from dairy cows that could 
become available on a large scale, including the performance of mid-infrared (MIR) 
spectra of milk. In this study, we investigated the relationship between MIR and 
methane emissions in Australian lactating dairy cows. Data on methane production 
(g/d), methane yield (g/kg of dry matter intake), methane intensity (g/kg of milk), and 
MIR spectra from 240 Holstein lactating cows that were part of two 32-day experiments 
conducted between October 2016 and December 2017 were used. Methane emissions 
were measured during a period of 5 consecutive days using the SF6 tracer technique, 
with corresponding morning milk samples were taken for milk composition analysis 
where MIR spectra were retained. Prediction models were developed using partial least-
square regression and performance was evaluated through a leave-one (animal)‑out 
cross-validation. 

The prediction accuracy was measured by the coefficient of determination. Two 
modelling strategies were examined, that were predictions of methane emissions using 
MIR spectra collected on the same day and those collected on the following day. The 
effect of lactation stage was also explored. In the first scenario, the prediction accuracy 
of methane production, methane yield and methane intensity were 0.25, 0.20, and 0.24, 
respectively while these were 0.33, 0.53 and 0.38 when using MIR spectra collected 
a day after the methane measurements occurred. Further, incorporating the effect of 
lactation stage into the model greatly improved the prediction accuracy to 0.29, 0.24 
and 0.33 versus 0.39, 0.55 and 0.42 when using MIR spectra collected on the same 
day versus the following day, respectively. In conclusion, our preliminary results indicate 
the potential of MIR spectra to predict methane emissions of Australian dairy cows. 
Additional data, especially that are measured on different feeding systems or breeds of 
cows, is essential to improve the prediction accuracy and the robustness of the models.

Keywords: methane emissions, dairy cows, mid-infrared spectroscopy. 
Presented at the ICAR Anual Conference 2024 in Bled at the Session 11: Methane 
Emission-Free Communications: Genetics, Environmental, and Life Cycle 
Assessment Studies
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In Australia, the latest report from the Australian Government Department of Climate 
Change, Energy, the Environment and Water shows that in 2022 agriculture produced 
78.7 million tonnes of CO2-e, which accounted for 17.4% of the total greenhouse gas 
emissions (NGER, 2022). The dairy industry contributes around 58% of the above 
figure, which is mainly due to the production of enteric methane (a by-product of the 
natural digestion in the rumen (Dairy Australia, 2023). As the result, various strategies to 
mitigate methane emissions (CH4) have been evaluated, including dietary intervention, 
microbiome manipulation, feed additives and genetics (Króliczewska et al., 2023). 
Selective breeding offers additive and permanent benefits that can be used together 
with other strategies. However, genomic selection requires a large number of records 
to achieve acceptable prediction accuracy (van den Berg et al., 2019). Many current 
methane measurement methods such as respiration chamber, sulphur hexafluoride 
tracer (SF6) and GreenFeed™ are accurate but they are still expensive and hard to 
implement on a large scale (Deighton et al., 2014, Patra, 2016). Lasers and sniffers 
have potential to increase the number of records provided they are highly correlated 
to gold-standard methods, such as calorimeters (Difford et al., 2018, Garnsworthy et 
al., 2019).

Mid-infrared (MIR) spectroscopy of milk samples has widely been reported to be able 
to predict methane emissions of individual cows, with accuracy (R2) ranging between 
0.04 to 0.79 depending on data and validation methods (i.e. random cross-validation 
or external validation) (Vanlierde et al., 2015, Shetty et al., 2017, Shadpour et al., 
2022a). Given MIR has routinely been used by milk-recording organization worldwide 
to quantify fat, protein and lactose concentrations, genetic evaluations of methane 
emissions could be done for a large dairy population without any additional costs. 
This is especially powerful for genotyped populations, as it can be used to generate 
genomic predictions that can be validated with methane measurements on a subset 
of genotyped cows.  

In April 2023, Lactanet in collaboration with Semex (Canada) published the first 
official Methane Efficiency genetic evaluations derived using phenotypes predicted 
from MIR spectra (Oliveira et al., 2024). Despite the extensive number of studies on 
MIR prediction of methane emissions, the transferability of such equations between 
countries is limited (Vanlierde et al., 2021). This is especially true when there are large 
differences in genetics, feeding and management which strongly affect MIR spectra 
and methane emissions. 

The objective of this study was therefore to evaluate the performance of MIR data to 
predict methane emissions of Australian lactating dairy cows. Specifically, we examined 
the predictability of the MIR spectra collected either on the same day or the following 
day as well as the benefit of incorporating lactation stage to the model performance.

The data used in this study were collected from the research farm of the Agriculture 
Victoria Research (AVR) in Ellinbank, Victoria, Australia between October 2016 and 
December 2017. In total, there were 240 Australian Holstein lactating cows. Within each 
year, 120 cows were chosen and divided into three batches of similar stage of lactation, 
parity, and body weight. The experiment was run for a period of 32 days. Cows had 
ad libitum access to feed and water. The diet contained cubes that were ~74% alfalfa 
hay, 25% crushed barley grain, 1% minerals (calcium, phosphorus, and magnesium) 
on a dry-matter (DMI) basis and was provided by Multicube Ltd (Yarrawonga, Victoria, 
Australia). Cow dry matter intake (kg of DM/day) was recorded using feed bins mounted 
on load cells that were electronically monitored by linking the bin-weight data to the 
electronic identification of individual cows (Gallagher Animal Management Systems, 
Hamilton, New Zealand). Milk yield (L/day) was measured for each cow twice daily 
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(morning and evening) using a DeLaval Alpro milking metering system (DeLaval 
International). Five days per week, morning milk samples were sent to TasHerd Pty Ltd 
(Hadspen, Tasmania, Australia) for analysis of fat, protein, and lactose concentrations 
by a mid-infrared spectrometer (Model 2000, Bentley Instruments, Chaska, MN, USA). 
The MIR spectra generated from the milk composition analysis were retained for this 
study. Methane production (MeP) were measured over a 5-d period using the SF6 tracer 
technique developed by Deighton et al. (2014). Using data of methane production, dry 
matter intake, and milk yield, methane yield (MeY) and methane intensity (MeI) were 
derived as gram of CH4/kg of DMI and gram of CH4/L of milk, respectively.

Spectral records (899 wavenumbers) were first matched with methane phenotypes 
that were collected either on the same day (Day0) or one day before (Day1) which 
resulted in 937 and 530 records, respectively, available for future analyses. Several 
mathematical treatments were then applied to the spectra. Specifically, the spectral 
regions characterized by low signal: noise ratio ((2,998 - 3,998 cm−1, 1,615 - 1,652 cm−1, 
and 649 - 925 cm−1), which is the consequence of high water absorption, were removed 
(Hewavitharana and van Brakel, 1997). There were 536 wavenumbers remained 
after this step. Then, a standardized Mahalanobis distance or also known as global H 
distance (Shenk and Westerhaus, 1995) between each spectrum and the population 
average was calculated. Spectra with a global distance larger than three were 
considered outliers and excluded as suggested by Williams (2004). Finally, first-order 
Saviztky–Golay derivative was applied to the reduced spectra (Savitzky and Golay, 
1964). The final dataset included 930 and 525 for D0 and D1 scenarios, respectively.  
Further, the effect of lactation stage on prediction accuracy was accommodated using 
the method described by Vanlierde et al. (2015).

The prediction models were developed using partial least-square regressions (PLS) 
and implemented in R with the PLS package (Mevik and Wehrens, 2007). Because 
the current dataset contained repeated measurements, we chosen leave-one animal 
out approach to validate the model performance. In this validation, the data of a given 
animal were removed from the main dataset to be used as a validation against the 
model trained with the remaining records. The optimal number of latent variables for 
PLS model was determined based on first local minimum value in root mean-squared 
error of prediction. The prediction accuracy was measured using the coefficient of 
determination (R2

cv) and root mean square error of prediction (RMSEPcv).

The means and standard deviations of MeP, MeY, and MeI were 515.4 ± 82.9, 
22.6 ± 7.4, 21.5 ± 4.4 respectively. A high coefficient of variation (16 – 32%) were 
observed for methane emissions which is essential to have a robust prediction equation 
(Soyeurt et al., 2011). In general, Table 1 shows that the prediction accuracy obtained 
from this study (0.20 – 0.55) was within the range that were previously reported in 
Denmark (Shetty et al., 2017), Canada (Shadpour et al., 2022b), and (McParland 
et al., 2024), but slightly lower than that in Belgium (Vanlierde et al., 2015). When 
the lactation stage effect was incorporated, the accuracy was improved by 4 – 9%. 
Vanlierde et al. (2015) reported a similar prediction accuracy between the two models 
(0.75 – 0.77) on calibration, but when applying on an independent dataset, the model 
with lactation stage effect produced prediction accuracy of 0.48 compared to 0.09 in 

Data processing

Model calibration 
and evaluation of 
performance

Results and 
discussion



454

Proceedings ICAR Conference 2024, Bled

Predicting methane emissions of Australian dairy cows

the simple model. A hypothesis behind such improved performance could be that the 
relationship between milk spectra and CH4 changes during lactation which is resulted 
from the mobilization of body tissues, and this should be considered in the model. The 
same pattern was observed for the models developed using milk spectra collected a 
day after methane measurements (Table 2).

Interestingly, the models that used spectra from milk samples collected 1 day after 
methane measurement (D1), resulted in a higher prediction accuracy compared to 
those collected on the same day (D0): 0.33 vs. 0.39, 0.53 vs. 0.55 and 0.38 vs. 0.42, 
respectively (Table 2). Dehareng et al. (2012) also concluded that milk spectra collected 
at day 1.5 produced better results that that collected on the same day. Apparently, this 
might be explained by the delayed response of milk composition, that is captured by 
MIR spectra, to ruminal fermentation. 

The results from this study indicate that it is feasible to predict methane emissions using 
the spectra of milk samples, with moderate accuracy. Further, the spectra collected 
one day after methane measurement produced better performance than that collected 
on the same day. It is also shown that incorporation of lactation stage effect improved 
prediction accuracy. Although the results are promising, the current dataset was rather 
small, and therefore more records need to be obtained especially on different breeds 
and feeding systems.

Conclusions

Table 1. Cross-validation accuracy of methane emissions predicted using 
MIR spectra collected on the same day, and with and without a correction 
for lactation stage.

Table 2. Cross-validation accuracy of methane emissions predicted using MIR 
spectra collected one day after, and with and without a correction for lactation 
stage.
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Table 1. Cross-validation accuracy of methane emissions predicted using MIR spectra collected on the same 
day, and with and without a correction for lactation stage. 

 R2cv RMSEPcv 
Independent of lactation stage 

Methane production (g/d) 0.25 72.0 
Methane yield (g/kg of DMI) 0.20 4.5 
Methane intensity (g/kg of MY) 0.24 6.4 

Dependent on lactation stage 
Methane production (g/d) 0.29 70.2 
Methane yield (g/kg of DMI) 0.24 6.4 
Methane intensity (g/kg of MY) 0.33 3.6 
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Table 2. Cross-validation accuracy of methane emissions predicted using MIR spectra collected one day 
after, and with and without a correction for lactation stage. 

 R2
cv RMSEPcv 

Independent of lactation stage 
Methane production (g/d) 0.33 68.5 
Methane yield (g/kg of DMI) 0.53 5.1 
Methane intensity (g/kg of MY) 0.38 3.5 

Dependent of lactation stage 
Methane production (g/d) 0.39 65.1 
Methane yield (g/kg of DMI) 0.55 4.9 
Methane intensity (g/kg of MY) 0.42 3.3 
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Ruminant digestion emits methane, a potent greenhouse gas contributing to global 
warming and reducing feed efficiency. Reducing enteric methane emissions (EME) via 
farming and breeding decisions is crucial, yet measuring these emissions on commercial 
farms is currently challenging and costly. It is common for EME to be measured using 
distinct technologies. However, different EME traits sometimes show weak correlations 
between countries, feeding systems or technologies, complicating the combination of 
reference populations. Here we show a methodology to predict and reduce EME with 
the use of the rumen microbiome. We identified a common core of 1,032 KEGG ontology 
identifiers (KO) from the rumen metagenome of 410 dairy cows located in Australia 
and 434 in Spain. This core explained 83% and 57% of EME (measured using SF6 in 
Australia and sniffers in Spain) with an accuracy of 0.38 and 0.19 respectively. This 
result suggest that the ruminal metagenome can be used to predict EME and make 
farming decisions to reduce these meissions. We also estimated reductions in EME 
of up to ~16% of the population mean per generation by selection on this core, being 
superior to direct selection on EME (~9 to 14%). A combination of direct selection 
on EME and indirect selection on the core would produce larger reductions (up to 
19%). These results suggest that rumen metagenome features could be candidate 
for improvement with genomic selection in combination with EME traits. Combining 
reference populations through the ruminal metagenome can be used to predict EME 
irrespective of each population’s EME trait. We propose a global effort to validate a 
common core of ruminal features associated with EME. If validated, our results could 
impact global ruminant emission reduction efforts.

Keywords: rumen microorganisms, metagenomics, methane production, phenotypic 
variation, genomic selection.  
Presented at the ICAR Anual Conference 2024 in Bled at the Session 11: Methane 
Emission-Free Communications: Genetics, Environmental, and Life Cycle 
Assessment Studies4
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Ruminants have evolved in symbiosis with their rumen microbiota for over 50 million 
years, and for this reason can transform plant materials that humans cannot digest into 
vital nutrients and energy. This capability depends on a diverse microbial community 
that, unfortunately, produces methane—a potent greenhouse gas (GHG) that 
contributes to approximately 40% of global methane emissions (Moss et al., 2000) and 
makes up 40% of total GHG emissions from livestock (FAO, 2023). In addition, enteric 
methane emissions (EME) represent 2 to 12% of the energy loss in the ruminants’ diet 
(González-Recio et al., 2023; Lassen and Difford, 2020). 

Reducing enteric methane emissions (EME) through farm-management and breeding 
decisions is ideal. However, EME need to be measured for this purpose and recording 
these emissions in commercial farms is currently logistically challenging and expensive. 
Additionally, different EME traits are sometimes weakly correlated, complicating the 
combination of reference populations (Hristov et al., 2016). However, all EME traits have 
the same underlying biology – methane is mainly produced by the rumen microbiota 
(González-Recio et al., 2023).

The role of the host genetics and the rumen microbiome on EME remains unclear. The 
host genetics partially determines both EME (López-Paredes et al., 2020; Richardson et 
al., 2021) and ruminal microbial features associated with EME (Martínez-Álvaro et al., 
2022; Saborío-Montero et al., 2021). For this reason, and according to the definitions 
of Pérez-Enciso et al. (2021), there could be two potential biological scenarios. Firstly, 
there is an indirect relationship where the host genome affects EME, but this is mediated 
by the microbiota. In the second scenario, a recursive model, both the host genetics 
and the microbiota exert influence on EME, and the host genetics also indirectly affects 
EME by modulating the microbiota (Saborío‐Montero et al., 2020).

In the last decade one of the most widely employed approaches  to study the effect 
of the rumen microbiome on EME is estimating the variance in EME explained by a 
microbial relationship matrix (MRM) (Ross and Hayes, 2022). Additionally, recent 
studies have estimated reductions in EME by implementing breeding programs selecting 
on ruminal microbial features, which are heritable and genetically correlated with EME 
(Martínez-Álvaro et al., 2022). 

This study aimed to generate a methodology to: First, quantify the effects of an MRM 
constructed using a novel methodology on EME in two distinct dairy cattle populations 
of more than 400 animal each, one in Australia and one in Spain. Second, to estimate 
the response to selection on EME by indirectly selecting on ruminal metagenomic 
features. Third, to investigate whether these two dairy cattle populations with distinct 
EME traits could be connected through the rumen metagenome.

The Australian experiments in this study were approved and undertaken in accordance 
with the Australian Code of Practice for the Care and Use of Animals for Scientific 
Purposes (NHMRC, 2013). Approval to proceed was granted by the Agricultural 
Research and Extension Animal Ethics Committee of the Department of Energy, 
Environment and Climate Action (application number 2013-14 was approved on August 
22nd, 2013, and application number 2016-12 was approved on August 22nd, 2016). The 
Spanish experiments in this study were conducted in accordance with Spanish Royal 
Decree 53/2013 for the protection of animals used for experimental and other scientific 
purposes and were approved by the Basque Institute for Agricultural Research and 
Development Ethics Committee (Neiker-OEBA-2017-004) on March 28, 2017.

Introduction

Material and 
methods

Ethical statement
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The Australian population included 410 Holstein lactating cows located at the Agriculture 
Victoria’s Ellinbank SmartFarm (Ellinbank, Victoria, Australia). These cows were 
measured for dry matter intake (DMI) and grams per day methane production (MeP) 
in 11 cohorts between 2013 and 2017. MeP was considered the EME trait in Australia. 
At the beginning of the study, cows averaged 110 ± 19.4 (mean ± standard deviation) 
days in milk, 2.5 ± 1.25 lactations, and weighed 539 ± 69.8 kg. Over a 32-day period 
in an experimental facility, they had continuous access to feed, water, and a bare 
paddock (loafing area) for rest. The cows were outside except for twice-daily milking. 
Cows were fed with the diet described by Moate et al. (2021) and DMI was measured 
using feed bins equipped with load cells and electronic monitoring linked to individual 
cow identification (Gallagher Animal Management Systems, Hamilton, New Zealand 
Daily DMI was recorded over the 32 days. Daily MeP was obtained with the sulphur 
hexafluoride (SF6) tracer method described by Deighton et al. (2014). Further details 
of the environment of the Australian dairy cattle population are provided by Moate et 
al. (2021). 

The Spanish population included 432 Holstein cows, either in their first or second 
lactation, from 14 commercial farms across four Northern Spanish regions (Cantabria, 
País Vasco, Navarra, and Gerona). Following the methodology of Rey et al. (2019), 
EME were measured using a non-dispersive infrared methane detector (The Guardian® 
NG) from Edinburgh Sensors (Livingston, Scotland, UK), also termed “sniffer”, installed 
in the feed bin of an automatic milking system. Individual methane concentration (MeC) 
in Spain as parts per million (ppm) was recorded for each cow during milking over a 
period of two to three weeks. The recorded eructation peaks were averaged to obtain 
a single record per cow. The Spanish population was under commercial milk recording 
schemes consistent with ICAR accredited recording protocols. 

Cows located in Australia were genotyped with SNP arrays including custom 
genotyping-by-sequencing (GBS) and selected SNP (XT) panels (approximately 
8,800  SNP of which at least 6,900 overlapped with the BovineSNP50 BeadChip, 
Illumina, San Diego, California, USA) and imputed to the Bovine 50K SNP chip panel 
using FImpute (Sargolzaei et al., 2014) as described by Haile-Mariam et al. (2020). 
Cows located in Spain were genotyped with the EURO12K SNP chip (Illumina, San 
Diego, California, USA) and imputed to 54,609 SNPs using BEAGLE (Browning et 
al., 2018) as described in Jiménez-Montero et al. (2013) and the Spanish reference 
population provided by the Spanish Holstein Association (CONAFE, Madrid, Spain) 
containing more than 200,000 genotypes. A panel with 39,058 (40K) SNP shared by 
both populations and with a minor allele frequency greater than 0.05 was selected 
for analyses. 

Ruminal fluid samples from all animals were collected via an oesophageal probe 
placed into the rumen via the mouth. In Australia a probe similar to the one described 
by Geishauser (2019), and a vacuum pump were used to collect samples (Moate et al., 
2014). In Spain, samples were obtained as described by Saborío-Montero et al. (2021). 
Following collection, ruminal fluid samples were frozen using liquid nitrogen vapours. 
Microbial genomic DNA was extracted from the ruminal fluid using a ZymoBIOMICS 
DNA miniprep kit (Zymo Research, Irvine, California, USA) in Australia, and with 
DNeasy Power Soil Kit (QIAGEN, Valencia, California, USA) in Spain. After DNA 
concentration and purity assurance, long-read sequencing with Oxford Nanopore 
Technologies (ONT) and R9.4.1 flow cells was used for metagenome sequencing 
(Oxford Nanopore Technologies, Oxford, United Kingdom). 

Data

Ruminal metagenome 
processing
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Basecalling was conducted using Guppy (Oxford Nanopore Technologies, Oxford, 
United Kingdom) with high accuracy mode (HAC) with the versions 5.0.16 and 4.2.2 in 
Australia and Spain, respectively. Reads with a quality score greater than 7 and 
sequence length greater than 150 base pairs were retained for analysis. The long reads 
were aligned to the KEGG database (Kanehisa and Goto, 2000) for KEGG ontology 
identifiers (KO) identification using the script SQM_longreads.pl of SqueezeMeta pipeline 
(version 1.4) (Tamames and Puente-Sánchez, 2019). 

KOs not present in all animals or that included genes of Bos taurus (cow) were removed, 
retaining 1,032 KOs for downstream analysis. These KOs were used to construct two 
absolute abundance matrices, one per population, with dimensions animals ×KOs and 
populated with the number of reads assigned to each KO in each animal. Subsequently, 
a relative abundance (RA) matrix was created from each population as the proportion 
of each variable’s absolute abundance compared to the total abundances in the same 
animal.  These RA matrices were CLR-transformed to account for their compositional 
nature (Gloor et al., 2017) using the unweighted option of the CLR function of the 
easyCODA R package (Greenacre, 2018).

A genomic relationship matrix (GRM) was created with genotypes of the SNP markers 
shared by both populations, utilising the Gmatrix function from the R package AGHmatrix 
(Amadeu et al., 2016) following the approach of Yang et al. (2010). Additionally, a 
MRM was constructed as:

M = (1/p)XXT						      (1)

Where M is the MRM, p is the number of KOs and X is the CLR-transformed matrix. A 
small constant value (1 x 10-8) was added to the elements on the main diagonal of the 
MRM matrices to prevent singularity issues. Finally, the GRM and MRM were inverted 
with the function solve of R (R Core Team, 2022). We avoided the step of scaling 
and centring the KOs across animals as is widely used (Hess et al., 2023; Ross and 
Hayes, 2022; Ross et al., 2012) as this step decreases large effects of KOs on EME 
(López‑García et al., 2022; Martínez-Álvaro et al., 2022; Roehe et al., 2016).

The variance in EME explained by the rumen microbiome was estimated with a 
microbiome BLUP (MBLUP) (Saborío-Montero et al., 2021) as:

y = 1’µ + Xβ + Uh + Wm + e				    (2)

Where m is the EME population mean; 1 is a vector of ones with the same length of 
g ; b is a vector of fixed effects; u is a vector of random additive genetic effects; and 
m is a vector of random microbiota effects. X and W are incidence matrices. The 
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distribution of m is assumed N(0, MRMsm2); and e is a vector of random residuals 
distributed N(0,se2). EME of each country was included as the dependent variable 
(y) in this model. The fixed effects in Australia were cohort (11 levels), DMI, days in 
milk, energy corrected milk obtained with the methodology of Visscher et al. (1994), 
and daily body weight change during the experiment. In Spain, the fixed effects were 
lactation number (2 levels) and stage of lactation (3 levels). In Spain, the robots used 
to measure emissions nested within farms (24 levels) was used as a random effect and 
is represented by the effect h and the incidence matrix U. The models were conducted 
with the function asreml of the R package ASReml-R (version 3) (Butler et al., 2009). 
The proportion of EME variance explained by the rumen microbiome, microbiability 
(m2), was estimated as follow, where sp2 is the phenotypic variance on EME:

m2=(σm
2)/(σp

2 )						      (3)

The accuracy of prediction was estimated with a 10 repetition, 5-fold cross-validation, 
where the phenotypes of the validation group were removed and the prediction 
was developed with the phenotypes from the remaining four groups and the rumen 
microbiome KOs of all animals. The prediction accuracy was calculated as the 
correlation between the random coefficient regressors from the MRM of the validation 
group and their EME. Then, the mean and standard deviation of the accuracies across 
the groups were calculated. This process was repeated 10 times, and the mean and 
standard deviations were averaged between repetitions to obtain the final accuracy 
mean and standard deviation.

Univariate genomic BLUP (GBLUP) were conducted to EME and each KO as the 
response variable in:

y = 1’µ + Xβ + Uh + Zg + e				    (4)

 
Where, g is a vector of random additive genetic effects with an assumed distribution N(0, 
GRMg

2) and Z is an incidence matrix. The rest of Equation 4 are the same previously 
described for Equation 2.

The heritability (h2) of the KOs was estimated as:

h2=(σg
2)/(σp

2 )						      (5)

The phenotypic correlation between KOs and EME was calculated as the Pearson 
correlation between them and the genetic correlations as the correlations between the 
genomic estimated breeding values obtained with Equation (4).

Phenotypic and 
genetic parameters
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We calculated three different scenarios to select against EME: (1) by directly selecting 
against EME only, (2) by indirectly selecting on the ruminal KOs only, and (3) by using 
a combination of scenarios (1) and (2), selecting on both EME and the KOs. The KOs 
used as indicative traits of MeP in Australia were 87 KOs in the core that had a heritability 
≥ 0.20 in Australia and a genetic correlation with EME in Australia ≥ 0.20  (core 
breeding Australia). Similarly, the KOs used as indicative traits of MeC in Spain were 
159 KOs in the core that had a heritability ≥ 0.20 in Spain and a genetic correlation 
with EME in Spain ≥ 0.20 (core breeding Spain). Additionally, we also used 15 KOs 
reported by Martínez-Álvaro et al. (2022) as associated with EME in beef cattle that 
were present in our core. We calculated the response to selection in all scenarios with a 
selection index approach (Cameron, 1997) incorporating the estimated heritability, and 
genetic and phenotypic correlations previously described using an in-house R script 
(R Core Team, 2022). Further, we calculated the response to selection when 30% to 
1% of the population with lowest methane emissions were selected.

The MRM explained 83 ± 7% of the variance in EME in Australia and 57 ± 20 % in 
Spain, with prediction accuracies of 0.37 ± 0.08 and 0.19 ± 0.11, respectively. The 
heritability of EME was 0.28 ± 0.12 and 0.11 ± 0.10 in Australia and Spain, respectively. 
The maximum KOs’ heritability was 0.56 in Australia and 0.47 in Spain, the genetic 
correlations between EME and KOs were up to |0.54| in Australia and |0.43| in 
Spain (Figure 1), and phenotypic correlations up to |0.49| and |0.22| in Australia and 
Spain. These results agree with that reported by (Martínez-Álvaro et al., 2022). The 
core breeding Australia had a heritability of 0.27 ± 0.06 and a genetic correlation of 
0.30 ± 0.07. The core breeding Spain had a heritability of 0.28 ± 0.07 and a genetic 
correlation of 0.24 ± 0.03.

Larger reductions were estimated with indirect selection on the KO cores compared 
with direct selection on EME, agreeing with a previous study (Martínez-Álvaro et al., 
2022). The mean MeP in Australia was 462 g/d, and the mean MeC in Spain was 
1,310 ppm. We estimated that, by selecting the top 1% of the population, a reduction in 
MeP of 13.6% of the population mean in Australia per generation with direct selection 
(Figure 2), 15.8% with indirect selection on the core breeding Australia, and 19.4% by 
combining direct and indirect selection on the core breeding Australia. Similarly, by 
selecting the top 1% of the population in Spain, we estimated a reduction in MeC of 
8.9% of the population mean per generation with direct selection, 12.6% with indirect 
selection on core breeding Spain, and 14.4% by combining direct and indirect selection 
on the core breeding Spain. Fifteen KOs were shared between our core and the KOs 
reported in beef cattle by Martínez-Álvaro et al. (2022). Reductions of 7.0% and 4.8% 
of the EME population mean per generation were estimated in Australia and Spain, 
respectively (Figure 2). These 15 KOs were also estimated to increase the reduction 
on EME when combined with direct selection, compared to use only direct selection.

Selection response 
of enteric methane 
emissions

Results
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Figure 1. Heritability (h2) of KEGG ontology identifiers (KOs) of a ruminal metagenome core shared 
between two dairy cattle populations located in Australia and Spain; and the genetic (rg ) and phenotypic 
correlation (rp ) between these KOs and methane production (MeP) in the Australian and methane 
concentration (MeC) in the Spanish populations.
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Figure 2. Estimated reduction by generation of enteric methane production (MeP) in 
Australian and enteric methane concentration (MeC) in Spanish dairy cattle populations. 
Red line: direct selection on enteric methane records. Blue: Indirect selection on ruminal 
microbial KEGG ontology identifiers (KOs). Green: Combination of direct selection on 
enteric methane records and indirect selection on KOs. In A and C, the KOs used are from a 
common core of 1,032 KOs shared between the populations located in Australia and Spain. 
A: Using 87 KOs with a heritability ≥ 0.20 in Australia and a genetic correlation ≥ with MeP. 
C: Using 42 KOs with a heritability ≥ 0.20 in Spain and a genetic correlation ≥ with MeC. 
B and D: Selection on 15 KOs shared between the Australian, Spanish dairy populations, 
and a beef cattle population (Martínez-Álvaro et al., 2022). 
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The large variance in EME explained by our 1,032 KO core suggests that the ruminal 
metagenome could be used to reduce EME, for example, by identifying and removing 
high-emitter animals based on their ruminal microbiome profile or providing feed 
additives designed to reduce emissions exclusively to higher-emitting animals instead 
of the whole herd. Larger reductions on EME were estimated when using our core than 
when using direct EME and these reductions were even higher when combining the 
ruminal features and the EME records. These results are consistent with a previous 
study (Martínez-Álvaro et al., 2022). The large EME reductions by selecting on the KOs 
could be expected because EME is not an intrinsic animal trait, but a characteristic of 
the ruminal microbial community. This microbial community is heritable and genetically 
correlated with EME (Figure 1). The core breeding Australia and core breeding Spain 
used to estimate the selection response was heritable (~0.27) genetically correlation 
with EME (rg = 0.30 in Australia; rg = 0.24 in Spain). Based on our results, the core 
breeding Australia and core breeding Spain could be considered as target traits for 
improvement in emissions reduction genomic selection programs, in combination with 
EME records. 

Genomic selection on a common ruminal metagenome core shared between Australia 
and Spain would lead to reductions in EME in both populations. These results indicate 
the potential for combining geographically diverse? reference populations in breeding 
programs through their ruminal metagenome, irrespective of each population’s EME 
trait (Figure 3). Additionally, 15 out the 30 KOs reported as associated with EME in 
beef (Martínez-Álvaro et al., 2022) were used to estimate reductions of up to 7% of 
EME’s population mean our dairy cattle populations (Figure 2). Further research could 
evaluate whether a common core between dairy and beef cattle, and other ruminants 
such as sheep, would reduce EME in all ruminant populations. Generating a reference 
population with EME measurements, ruminal metagenome and host genomics is 
costly and time consuming. Based on the results of this study, fostering international 
collaboration among the dairy, beef and other ruminant industries to combine diverse 
populations, EME traits, and environments through the rumen metagenomecould 
be beneficial for reducing global methane emissions. A common methodology is 
recommended for this purpose and based on our results, we present a methodology 
that (1) predicts most of the variance in EME, (2) potentially leads to significant EME 

Discussion

Figure 3. Sharing reference populations of the ruminal metagenome core facilitates prediction of enteric methane 
production (MeP) in Australia and enteric methane concentration (MeC) in Spain. Core breeding Australia: 
KOs with heritability ≥ 0.20 in Australia and genetic correlation with MeP ≥ 0.20. Core breeding Spain: KOs 
with heritability ≥ 0.20 in Spain and genetic correlation with MeC ≥ 0.20.
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reductions through informed farming and breeding decisions, and (3) could potentially 
connect reference populations irrespective of their EME traits.

•	 We have developed a methodology to predict enteric methane emissions (EME) 
from ruminants. Using this methodology, we detected a common core of 1,032 
KEGG ontology identifiers (KO) in the rumen metagenome of 834 dairy cows from 
Australia and Spain. This core explained up to 83% of the variation in EME with 
an accuracy of up to 0.38, which could potentially facilitate farming decisions aims 
to reduce methane emissions. 

•	 Large reductions in EME, of up to ~16% of the population mean per generation, 
could be achieved by selection on this core, being superior to direct selection on 
EME. A combination of direct selection on EME and indirect selection on the core 
would produce larger reductions (up to 19% of the population mean). These results 
suggest that rumen metagenome features could be candidate traits to improved- 
genomic selection programs along with EME records.

•	 Sharing reference populations of the ruminal metagenome core facilitates prediction 
of EME irrespective of each population’s EME trait. For this reason, we propose a 
global effort to validate a common core of ruminal features associated with EME. 

•	 If validated, our results could impact global ruminant emission reduction efforts.
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In Switzerland, agriculture contributes 14.3% of greenhouse gas emissions, primarily 
methane from livestock, especially dairy cows. To meet emission reduction targets, a 
nationwide effort is underway to measure methane emissions and reduce the impact 
of dairy cows with genetic selection. The project named CH4COW is funded by various 
entities and aims to install methane detection systems on 60 farms across Switzerland, 
focusing on different feeding systems and breeds. The project represents a significant 
step towards reducing methane emissions through breeding strategies tailored to Swiss 
dairy farming conditions. Long-term benefits include potential collaborations in areas 
like ruminant nutrition and life cycle assessment.
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In Switzerland, 14.3% of greenhouse gas emissions come from agriculture. Although 
this is not much compared to transport, for example, agriculture is under societal 
and political pressure to reduce its emissions. Agriculture is responsible for 83.3% of 
methane emissions in our country (FOEN, 2024). Livestock, especially dairy cows, 
are a major contributor. Therefore, in order to meet the target of a 50% reduction in 
greenhouse gas emissions by 2030 compared to 1990 and CO2 neutrality by 2050 
(FOEN, 2023), action is needed at all levels. Besides farm and management level, 
the dairy industry has powerful tools at the cow level. Feeding measures can be very 
effective and have an immediate impact (Hristov et a., 2015). Breeding actions have 
a medium to long-term aspect (e.g. Pryce et al., 2014), but if implemented in the right 
selection strategy they are sustainable. For this reason, the umbrella organization of 
all Swiss cattle breeding organizations decided to launch a phenotyping offensive with 
the aim of implementing a routine genetic evaluation for reduced methane emission 
based at least in part on Swiss phenotypes.

The reasons for having our own phenotypes are the following:

1.	 Our feeding systems are often different from the rest of the world; we have distinctly 
different summer and winter diets and in general our diets are very emphasized 
on roughage (Zeitz, Soliva and Kreuzer, 2012). 

2.	 Some farmers are not allowed to feed silage due to specific regulations for certain 
cheese manufacturing processes (FOAG, 2015). 
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3.	 Animal welfare regulations and programs require regular outdoor access or even 
grazing in some cases (TSchV, 2024). 

4.	 Swiss milk production is not only based on Holstein (HOL) breeds: An important 
part comes from Brown Swiss (BSW) or certain local breeds such as Simmental 
or Original Braunvieh (Identitas, 2024).

The CH4COW project started this year in January and will last for 4 years. The installation 
of 60 sniffers on farms across the country will take place this year. Thirty sniffers will be 
installed in HOL herds, and the other in BSW herds. The project is funded by the Swiss 
Federal Office of Agriculture (FOAG), some regional governments and the Association 
of Swiss Cattle Breeders (https://asr-ch.ch/en/). Although most sniffers will be placed 
in automatic milking systems (AMS), ten of the HOL farms are not allowed to have 
AMS due to regulations for certain cheese manufacturing processes, mainly Gruyère 
AOP (FOAG, 2015). There, the sniffers will be installed in automated feeding stations 
in parallel with the installation of an animal identification system.

The start of this project is a first step towards the reduction of methane emissions from 
dairy cattle in Switzerland through breeding. Several options for the next step will be 
available and need to be validated. In the short term, we will be able to contribute our 
methane phenotypes to an extension of existing methane phenotype predictions using 
mid-infrared spectroscopy milk data, or to develop our own prediction. After that, we 
should be able to perform genomic evaluation for routine purposes. In the medium or 
long term, based on the experience gained, we could extend the sniffer phenotyping 
process to perform a genomic evaluation with real measured phenotypes.

The future pool of data and knowledge could form the basis for further collaborations. 
Not only in breeding, but also in related disciplines such as ruminant nutrition or life 
cycle assessment.
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Climate change and the rising and fluctuating costs for energy and concentrated feed 
are major challenges for the livestock sector. The breed4green project focuses on 
researching strategies to reduce methane emissions and enhance feed efficiency 
within the Austrian cattle industry. Measurements of methane and CO2 emissions 
are currently being conducted on both experimental and commercial farms using the 
GreenFeed system. The aim of the project is to collect methane and CO2 measurements 
of approximately 1,000 Fleckvieh and 200 Brown Swiss cows. In addition, various 
phenotypes such as health, body weight, BCS, metabolism, energy intake and milk 
mid infrared (MIR) spectra are recorded. Data on feed intake from experimental farms 
are also available for validation. The genetic potential of direct traits like methane, 
CO2 and feed efficiency, along with their correlations to health and other traits, will be 
analyzed. The project also includes the development and validation of MIR equations 
for emitted methane and energy balance. The focus will be on investigating the use 
of these indirect traits to reduce methane emissions and improve feed efficiency in 
breeding programs to pave the way for genomic selection. The results will also be 
used to optimize herd management. Furthermore, the environmental impact of relevant 
dairy and beef production systems in Austria will be investigated.

Keywords: GreenFeed, methane emission, feed efficiency, mid infrared, dairy cattle. 
Presented at the ICAR Annual Conference 2024 in Bled at the Session 11: 
Methane Emission-Free Communications: Genetics, Environmental, and Life Cycle 
Assessment Studies 

The cattle sector is challenged by climate change and its implications on animal 
wellbeing and feed production but is also made responsible for methane emissions. 
breed4green aims to improve sustainability in Austrian cattle farming, focusing on 
individual animals. Genetic improvements in feed and energy efficiency, as well as 
reducing greenhouse gas emissions, are key leverage points to reduce environmental 
impacts and are focus of breed4green.

The goal of the project, which started in May 2023 and will run until December 2027, is to 
investigate breeding strategies focusing on feed efficiency and reduction of greenhouse 
gas emissions for the Austrian cattle industry. To achieve this, phenotypes to assess 
the genetic background of these traits will be generated. As they are expensive to 

Abstract

breed4green: 
direct and indirect 
traits for feed 
efficiency and 
greenhouse gas 
emissions for 
cattle breeding and 
herd management

mailto:linke@zuchtdata.at


476

Breed4green: Recording new phenotypes for methane emission

Proceedings ICAR Conference 2024, Bled

record, proxies will be developed and validated. Data from research stations and 
commercial farms will be used to derive these novel traits for breeding in the areas of 
feed efficiency and greenhouse gas emission reduction.

Methane and CO2 measurements on individual animals in experimental and commercial 
farms using the GreenFeed system, combined with extensive data collection on 
health and feed efficiency (health, weight, body condition score, metabolism, energy 
intake, mid-infrared (MIR) spectra) form the basis for research in this area. This will be 
complemented by existing data on feed intake at the station and additional data from 
station records as well as from commercial farms like performance data, data from 
the cattle data network, data from AMS systems and sensors. The goal is to conduct 
measurements on approximately 1,000 Fleckvieh and 200 Brown Swiss cows in 
commercial farms. At the moment, the data recording on the first farms is in progress. 

The focus of the project is on the genetic improvement of feed efficiency and methane 
emissions. The genetic potential of the direct trait methane and CO2 emission, and the 
genetic correlations to health and other traits in the total merit index, as well as the 
factors influencing the methane output of the animals, are analyzed. The new data 
are also used for the development and validation of MIR equations. The potential of 
the indirect trait MIR-methane is analyzed and indirect traits for feed efficiency are 
developed. The developed MIR estimators for energy balance and energy deficit 
are validated using station data, and their potential for improving feed efficiency is 
investigated in conjunction with other relevant traits. The genetic relationships between 
the traits feed efficiency and methane or CO2 emissions are analyzed, and the potential 
of using indirect traits for feed efficiency and methane emissions for broad application 
in breeding is explored. The project aims to lay the foundation for genomic selection 
for feed efficiency and reduction of greenhouse gas emissions. Furthermore, the 
environmental impact of relevant milk and beef production systems in Austria is being 
researched.

In breed4green; the Cattle Breeders Austria; Higher Federal Teaching and Research 
Institute for Agriculture Raumberg Gumpenstein; LKV Austria; BOKU University; 
ZuchtData EDV Dienstleistungen GmbH; Fleckvieh Austria and Brown Swiss Austria 
work together in 10 work packages to achieve these goals; breed4green is supported by 
the Austrian Federal Ministry for Agriculture, Forestry, Regions and Water Management 
and dafne.at. The project has further cooperation and supporting partners.

Partners
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Figure 1. Partners in breed4green.
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Cattle barns are an important source of greenhouse gasses (GHG). In buildings for 
dairy cattle, the interaction of weather conditions and microclimatic parameters have an 
influence on the emission of GHG. The aim of the study was to determine the effects 
of the housing system and the seasons on the concentration of methane and carbon 
dioxide in dairy cattle barns. As part of the EIP-AGRI project “Innovative environmental 
and climate-based management systems of cattle farms to ensure feed production and 
optimal conditions for rearing cattle”, we carried out monthly CH4 and CO2 concentration 
measurements at different points in the dairy cattle barn of ten farms with different 
housing systems (tied-in housing system, loose housing with cubicles and slatted floor 
or with concrete floor, compost bedded pack barn, deep straw housing and innovative 
housing system with permeable floor). The measurements were carried out from July 
2022 to October 2023 at a height of 1.5 m. Each measurement lasted 5 minutes. For the 
measurements we used the portable gas analyser GASMET GT5000 Terra. In addition 
to greenhouse gas concentrations, microclimate parameters (temperature, relative 
humidity and air flow) were also measured using a TESTO 435 multimeter. Based on 
the 4,633 measurements, we find that there are differences in the measured CH4 and 
CO2 concentrations between farms with different housing systems, different methods 
of removal and storage animal secretions and in terms of measurement time. We find 
that, on average, the lowest CH4 concentrations (11.46 ± 8.83 ppm) were measured in 
compost bedded pack barns and the lowest CO2 concentrations (517.67 ± 85.13 ppm) 
in deep straw barn. The highest concentration of CH4 (33.24 ± 23.40 ppm) and CO2 
(787.49 ± 254.12 ppm) was measured in barns with tied-in housing. The lowest 
concentration of CH4 (17.70 ± 11.21 ppm) was measured in June 2023 and of CO2 
(558.04 ± 126.55 ppm) in August 2022. The concentrations of CH4 and CO2 measured 
in the winter months were on average higher than the concentrations measured in 
the summer months. Higher CH4 and CO2 concentrations were found in closed barns 
where air flow was poorer. The differences between the CH4 and CO2 concentrations 
measured in the summer and winter months were smaller in more open barns. A 
correlation coefficient of 0.755 indicates a relatively strong linear relationship between 
CH4 and CO2 concentrations. This means that changes in CH4 concentrations are 
closely associated with corresponding changes in CO2 concentrations across the 
measured data points and vice versa.

Keywords: cattle, dairy cows, housing system, methane, carbon dioxide, season, Slovenia. 
Presented at the ICAR Anual Conference 2024 in Bled at the Session 11: Methane 
Emission-Free Communications: Genetics, Environmental, and Life Cycle Assessment 
Studies
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Methane (CH4) is a greenhouse gas (GHG) whose global warming potential is 23 times 
higher than that of carbon dioxide (CO2) (IPCC, 2001). Enteric fermentation and 
manure management account for 35 to 40 % of total anthropogenic CH4 emissions 
and 80 % of CH4 released from agriculture (FAO, 2006). With the intensification of 
milk production, dairy cattle barns have been identified as an important source of GHG 
emissions (Qu et al., 2021). Quantifying GHG emission rates in dairy cattle barns with 
natural ventilation is a challenging task, as many different factors influence the release 
of these emissions (Samer et al., 2011), but if done properly, it could contribute to the 
development of accurate emission inventories and effective mitigation strategies (Qu et 
al., 2021). Therefore, it is necessary to carry out this type of research on farms under 
realistic conditions if we want to obtain representative and reliable measurement results. 
Conducting the trial on several farms at the same time (multi-farm trial) contributes to 
more reliable results. In addition, attention must be paid to representative sampling, 
which requires an appropriate spatial distribution of the measurement locations within 
the barns. In order to take into account, the influence of climatic factors, measurements 
must be carried out throughout the year (Schrade et al., 2012). Indeed, the climatic 
conditions surrounding livestock buildings are considered to be an extremely important 
factor for GHG emissions, as these conditions are likely to be essential for naturally 
ventilated buildings, as they have a direct influence on the ventilation rate and most 
likely also on the emission rate (Ngwabie et al., 2009). Numerous studies have shown 
that heat stress, which is a function of relative humidity and air temperature, affects 
both the behaviour and performance of dairy cows (Joo et al., 2015; West, 2003). 
Therefore, further research into the effects of environmental factors on GHG emissions 
from dairy cattle barns is important (Joo et al., 2015). 

The aim of the study was to determine the influence of the housing system and the 
season on the CH4 and CO2 concentrations in ten different dairy cattle barns with 
different housing systems.

As part of the EIP - AGRI project “Innovative environmental and climate-based 
management systems of cattle farms to ensure feed production and optimal conditions 
for rearing cattle”, we carried out monthly measurements of CH4 and CO2 concentrations 
on ten milk production-oriented farms with different housing systems. The study 
therefore included three dairy cattle barns with cubicles and slatted floors (farm 2, 
farm 3 and farm 6), one dairy cattle barn with cubicles and concrete floor (farm 7), 
two compost bedded pack barns (farm 8 and farm 9), two barns with tied-in housing 
system (farm 4 and farm 10), one barn with deep straw housing (farm 5) and one farm 
with an innovative housing system with a permeable floor (farm 1). The measurements 
were carried out from July 2022 to October 2023 at a height of 1.5 m above the floor at 
various locations within the barns: in the feeding alley, on the cow traffic routes, in the 
lying alley and in the young stock housing area (Figure 1). Each measurement at each 
selected location inside and outside the barn lasted 5 minutes. The GHG concentrations 
were measured with a portable gas analyser Gasmet GT5000 Terra. It works on the 
principle of FTIR technology (Fourier transform infrared spectroscopy), which enables 
fast, accurate and reliable measurements of up to 300 different gas components 
simultaneously based on the absorption of IR light (Gasmet, 2022). In addition to the 
GHG concentrations, microclimate parameters (temperature, relative humidity and air 
flow) were also measured at the same locations as the GHG measurements. These 
measurements were carried out using a Testo 435 Multi-Metre.

The data analysis of the measurements of greenhouse gas concentrations and 
microclimate parameters was carried out using the SAS Stat statistical package. We 
were interested in the effects of different housing systems and the influence of season 
on the concentrations of CH4 and CO2 in different housing systems for dairy cows. For 

Figure 1. Lactation curves comparing milk production, intake and 
body condition showing reaction of body condition in early and 
potential over condition at the end of lactation.

Introduction

Material and 
methods
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the statistical analysis we used two different statistical models. The systematic part 
of both models was developed using the least square means method with the GLM 
procedure in the SAS statistical package, and the differences within each influence 
were tested using analysis of variance (ANOVA) (F-test).

In the first model, CO2 was used as a variable, and in the systematic part of the model, 
M was used as the month, F as the farm where we took the measurements, and T(M) as 
the housing system nested within the month. The influence of CH4 concentrations was 
included in the model in the form of a linear regression (see equation 1). The systematic 
influence of the month of measurement had a statistically significant influence on CO2 
concentrations (p<0.0001), as did the systematic influence of the farm (P <0.0001) 
and the influence of the housing system within the month (P <0.0001). In addition to 
the systematic influences on the CO2 concentrations, the CH4 concentrations in the 
barn also had a statistically significant influence (p<0.0001). With this model, we were 
able to explain 78.99 % of the variance (R2 = 78.99 %).

yijkl = µ + Mi + Fj + Tki + b1 (xijk - x) + eijkl 				    (1)

In the second model, we used CH4 concentration as a variable, and in the systematic 
part of the model, we used M as the month, F as the farm where the measurements were 
taken, and T(M) as the housing system nested within the month of the measurements. 
A linear regression coefficient was used for the influence of CO2 concentration (see 
equation 2). The influence of the month and the influence of the farm had a statistically 
significant influence on the measured CH4 concentrations in the barn (P<0.0001), the 
same applies to the influence of the housing system, which was nested within the 
month and the influence of the linear regression (P <0.0001). With the second model, 
we were able to explain 72.29 % of the variance (R2 = 72.29 %).

yijkl = µ + Mi + Fj + Tki + b2 ( xijk - x ) + eijkl 				    (2)

Figure 1. Schematic representation of the measuring points in the barn.

 

 

 
 
Figure 1. Schematic representation of the measuring points in the barn. 
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Based on the 4,633 measurement results, we find that there are differences in the 
measured CH4 and CO2 concentrations between the individual farms with different 
housing systems, different methods of removal and storage of animal secretions and 
with regard to the measurement time. On average, the lowest CO2 concentrations 
(529.09  ±  51.71 ppm) were measured in deep straw barn and the highest 
(833.54 ± 204.90 ppm) in barns with tied-in housing system. In August 2022, when 
the average air temperature was 23.64°C ± 3.05°C and the average relative humidity 
was 63.98 % ± 9.05 %, CO2 concentrations (558.04 ± 126.55 ppm) were the lowest on 
average, and in March 2023, when the average air temperature was 11.26°C ± 4.14°C 
and the relative humidity was 57.86 % ± 13.77 %, the measured CO2 concentrations 
were the highest on average (789.77 ± 240.88) (Figure 2, Table 1).

On average, the lowest CH4 concentrations (10.23 ± 3.00 ppm) were recorded in 
compost bedded pack barns and the highest similar to the CO2 concentrations, in barns 
with tied-in housing (36.38 ± 14.54 ppm) (Figure 3). The CH4 concentrations measured 
in the winter months were on average higher than the concentrations measured in the 
summer months. The lowest CH4 concentrations (17.69 ± 11.21 ppm) were measured in 
June 2023, when the average air temperature was 21.15°C ± 2.59°C, and the average 
relative humidity was 63.28 % ± 10.86 %. The highest average CH4 concentrations 
(28.51 ± 21.32 ppm) were measured in January 2023, when the average air temperature 
was 5.74°C ± 3.82°C, and the average relative humidity was 72.92 % ± 6.16 % (Table 1). 

The concentrations of the two gases investigated, CH4 and CO2, were on average higher 
in the winter months than the concentrations measured in the summer months. The 

Results and 
discussion

 

 

 
 
Figure 2. Differences in average CO2 concentrations between farms and seasons. 
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Figure 3. Differences in average CH4 concentrations between farms and seasons.

 

 

 
Figure 3. Differences in average CH4 concentrations between farms and seasons. 
  

Table 1. Descriptive statistics (mean and STD) for CO2 and CH4 concentrations in the different measurement 
months.

 

 
Table 1. Descriptive statistics (mean and STD) for CO2 and CH4 concentrations in the different measurement 
months 

Month N CO2  
(ppm) 

CH4  
(ppm) 

Temperature 
(°C) 

Humidity  
(%) 

July 2022 294 594.53 ± 136.93 21.92 ± 25.40 25.59 ± 2.72 54.63 ± 11.82 
August 2022 277 558.04 ± 126.55 25.11 ± 27.32 23.64 ± 3.05 63.98 ± 9.05 
September 2022 329 582.01 ± 121.13 21.83 ± 17.25 16.33 ± 2.65 71.66 ± 8.71 
October 2022 311 631.67 ± 142.09 21.53 ± 15.54 15.78 ± 2.02 71.64 ± 8.71 
November 2022 311 673.82 ± 192.92 20.45 ± 18.00 7.87 ± 3.46 75.17 ± 5.52 
December 2022 277 662.97 ± 179.67 21.72 ± 16.08 4.64 ± 3.04 73.83 ± 5.49 
January 2023 295 726.58 ± 237.17 28.51 ± 21.32 5.74 ± 3.82 72.92 ± 6.16 
February 2023 277 695.35 ± 255.34 26.55 ± 24.43 5.35 ± 3.74 62.05 ± 8.38 
March 2023 311 789.77 ± 240.88 24.17 ± 21.52 11.26 ± 4.14 57.86 ± 13.77 
April 2023 277 752.00 ± 209.69 19.47 ± 16.81 12.60 ± 2.86 51.21 ± 13.27 
May 2023 311 596.52 ± 144.07 17.76 ± 11.55 16.47 ± 2.27 64.83 ± 9.29 
June 2023 277 570.12 ± 131.80 17.69 ± 11.21 21.15 ± 2.59 63.28 ± 10.86 
July 2023 275 609.24 ± 152.27 23.64 ± 20.05 23.38 ± 3.05 70.16 ± 9.07 
August 2023 277 570.96 ± 112.32 21.07 ± 20.36 20.82 ± 2.88 68.73 ± 9.08 
September 2023 259 614.34 ±143.10 26.05 ± 25.28 20.91 ± 3.11 65.77 ± 17.35 
October 2023 277 575.33 ± 133.58 24.37 ± 26.06 14.73 ± 3.49 72.70 ± 8.03 

 

differences between the CH4 and CO2 concentrations measured in the summer and 
winter months were smaller in more open barns. We also found that higher CH4 and CO2 
concentrations were detected in more closed barns where airflow was poorer. Qu et al. 
(2021) indicate that CH4 emission rates tend to increase with increasing temperature. 
Poteko et al. (2019) also find similar findings. In their report, Joo et al. (2015) investigated 
the influence of environmental factors on various GHG concentrations. They found 
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that air temperature had the greatest influence on the increased CO2 concentrations in 
the dairy cattle barn, while the contribution of relative humidity had the least influence. 
Similar to CO2 concentrations, elevated CH4 concentrations in the barn were significantly 
influenced by air temperature and air velocity, while the contribution of by relative air 
humidity was the smallest (Joo et al., 2015). The air temperature between 5°C and 
25°C is referred to as the thermoneutral range for lactating dairy cows. Outside this 
comfort zone, animal activity can be negatively affected, resulting in low metabolism, 
reduced appetite, low CO2 levels in the bloodstream and lower respiration, which in 
turn leads to lower CO2 emissions (West, 2003). High temperatures, which reduce 
the time cows devote to eating and rumination, also lead to a reduction in the amount 
of CH4 produced (Ngwabie et al., 2011). However, Qu et al. (2021) note that data 
synthesis shows large differences between CH4 emission rates in dairy cow barns in 
different publications.

A correlation coefficient of 0.755 indicates a relatively strong linear relationship 
between CH4 and CO2 concentrations, which is in line with the results of Joo et al. 
(2015) (R2 = 0.67 – 0.74). This implies that changes in CH4 concentrations are closely 
associated with corresponding changes in CO2 concentrations and vice versa, across 
the measured data points, due to the common origin (enteric fermentation and 
respiration) in ruminants (Joo et al., 2015). 

In the future, it is expected that major changes will be required from agriculture in terms 
of reducing greenhouse gas emissions (Pathak et al., 2013). Quantifying gas emission 
rates in dairy cow barns could help to develop accurate emission inventories and 
effective mitigation strategies (Qu et al., 2021). Estimates of gas emissions in dairy barns 
are highly dependent on the measurement of ventilation rates and gas concentration 
(Qu et al., 2021). Changes in some husbandry practices with the aim of reducing GHG 
emissions, such as feed production strategies and feeding practices, animal housing 
facilities, animal excreta handling practices, etc., will be a major challenge for agriculture 
in the future (Pathak et al., 2013), but at the same time could help to tackle climate 
change and improve air quality on a large scale (Hassouna et al., 2016).
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Across countries and ruminant species, animal selection has been identified as 
a desirable method of reducing methane (CH4) emissions. A possible strategy is 
to develop a reference population to enable genomic selection for emission traits. 
However, the high cost and slow throughput of phenotyping make it challenging to 
rapidly collect sufficient information for publishing CH4 breeding values in sheep. This 
project intends to measure methane emissions from 10,000 animals.

The most common method of measuring CH4 emissions from sheep is with a portable 
accumulation chamber (PAC) where CH4, carbon dioxide (CO2) and oxygen (O2) are 
measured at a mid-point (20 or 25 minutes) and end point (40 or 50 minutes) in the 
PAC. Two measurement devices can be used, referred to as FID (for CH4) and FoxBox 
(for CO2 and O2); a third device known as an ‘Eagle’ can measure CH4, CO2, and O2. 
The Eagle device is both cheaper and simpler to use. However, there are concerns 
about the lower sensitivity and precision of the Eagle compared to FID and FoxBox. 
The aim of this study was to compare both the duration of measurement, and the 
devices used to measure methane traits in sheep.

Data from 3,729 lambs and ewes were fitted with a bivariate animal model for methane 
rate (mL/min) from different measurement durations or measured with different devices. 
The following significant fixed effects were fitted for Site.Day.Run, birth and rearing 
type, age, age of dam, sire breed, and sex. Estimates of heritability of CH4 ranged from 
0.15 to 0.19 and were not significantly different between CH4 measurement device or 
measurement duration. The genetic correlation for CH4 measured using FID or Eagle 
was 0.96 for the short duration and equal to one for the long duration, and the phenotypic 
correlation between the two devices was 0.94 for the short duration and 0.97 for the 
long duration. The genetic correlation for CH4 measured at 20-min and 40-min was 
equal to one for both measurement devices, with a phenotypic correlation of 0.80 when 
CH4 was measured with the with the Eagle and 0.82 when measured with the FID.

Among other factors, the accuracy of genomic prediction depends on the heritability of 
the trait and the number of animals measured. We used the heritability of CH4 according 
to different measurement methods to predict accuracy of genomic prediction. Assuming 
a heritability of 0.17 from the Eagle long measurement and 10,000 animals measured, 
gave an accuracy of genomic prediction of 0.42. We assumed that shortening the 
measurement time from 40 mins to 20 mins would allow 40% more animals measured 
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(14,000 total), which resulted in a accuracy of genomic prediction of 0.48. We found 
that the heritability was not significantly different between measurement durations, 
however if it were lower for the shorter measuring period (0.15) the accuracy of genomic 
prediction would be 0.45. 

By reducing the measurement duration with the PAC methodology, there is limited or 
no loss of precision indicated by heritabilities that are not significantly different. The 
time saved with shorter measuring periods can be used to phenotype more animals or 
reduce labour costs. The overall benefit is a lower cost per animal with potentially more 
animals measured and an overall increase in accuracy of genomic prediction. However 
more clarity is needed regarding how many additional animals can be recorded with 
shorter measurement durations. 

Keywords: methane, sheep, small ruminant, phenotyping, protocol. 
Presented at the ICAR Anual Conference 2024 in Bled at the Session 11: Methane 
Emission-Free Communications: Genetics, Environmental, and Life Cycle 
Assessment Studies 

Globally, genetic selection for lower methane has been identified as a promising method 
of reducing the contribution ruminant species have on greenhouse gas output. Over the 
past two decades, several Australian studies measured methane (CH4) on over 7,000 
sheep and reported estimates of heritability (0.11 to 0.18) for various methane traits 
(Robinson et al., 2014, Goopy et al., 2016, Paganoni et al., 2017, Wahinya et al., 2022, 
Sepulveda et al., 2022). Additionally, selection line experiments in New Zealand have 
demonstrated genetic selection does lower methane production (Rowe et al., 2019). 
One of the main challenges to an industry-wide implementation of methane selection 
is the publication of reliable breeding values for a methane trait as the trait is currently 
not measured by breeders. A possible strategy is to develop a reference population to 
enable genomic selection for emission traits, but rapid collection of sufficient phenotypes 
for this purpose is not easy. 

The majority of sheep production is based on pasture systems. Measuring many 
animals for methane output in pasture production systems is a challenge. One method 
used in sheep to measure methane production is the use of portable accumulation 
chambers (PACs). The use of PACs has improved the feasibility of measuring large 
numbers of sheep. Each PAC chamber is an airtight box, a sheep is placed inside the 
box for a period of time (less than one hour), the methane (CH4), carbon dioxide (CO2), 
and oxygen (O2) concentrations are measured at multiple time points during the PAC 
occupation. As the volume of the box is known, the gas concentration accumulated over 
the measurement duration can be converted to methane rate (ml/min). Across studies 
and between protocol methods, different gas measuring devices have been used, it 
is important to determine if the different devices are measuring the same trait, if the 
various datasets are to be used in the same genetic evaluation. The typical protocol 
requires a large amount of experienced and technical labour, and throughput is limited 
by the number of chambers and the occupation duration. 

Simplifying the protocol by using cheaper and easier to use devices, could reduce the 
cost of measurements. However, cheaper and easier to use devices tend to have lower 
precision and can lower the accuracy of measurements. Additionally, the amount of 
time within a PAC chamber could potentially be reduced. While this would lower the 
accuracy of the measurement, it would allow for additional animals to be measured and/
or reduce labour costs per animal measured. Reducing the accuracy either with less 
accurate devices or shorter measurement durations, will also lower the heritability for 
the same trait. It is important that the sheep industry is provided with accurate breeding 
values for methane, both heritability and number of animals phenotyped affect the 
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accuracy of genomic prediction. It is therefore important to investigate how potential 
changes to protocol will change the accuracy of genomic prediction.

This work aimed to demonstrate that reducing measurement duration, may decrease 
the accuracy of measurements, but the reliability of genomic prediction would increase, 
as more animals could be phenotyped. An additional objective of this analysis, was to 
determine if different measurement devices are measuring the same methane trait. 
This would help determine the feasibility of including all 17,000 records from the current 
and historic projects in a single genetic evaluation, especially as the historic data did 
not have access to the recent developments in measurement technology. This could 
allow the current protocols to be simplified by reducing the number of gas measuring 
devices and thereby reducing labour intensity. 

Between March 2022 and February 2024, CH4, CO2, and O2, was measured on 3,769 
sheep across seven sites (Four research sites and three industry breeder flocks) in 
New South Wales (NSW), Australia. At one of the research sites, 501 lambs were 
measured in 2022, and another 504 lambs in 2023, all other sites measured mixed 
aged ewes and were only visited once. At each site, up to a maximum of 84 animals 
were measured each day, with the aim of phenotyping 500 sheep over consecutive 
days. Animals were placed in a holding paddock near to the site of PAC measurements, 
with access to feed and water. Animals were measured in up to seven batches (six 
batches per day is the current standard practice) across twelve PACs. The 12 chambers 
were occupied in a staggered order with animals taken off feed one hour earlier.  The 
measurement of 12 sheep constituted one run, and after allowing air circulation the 
protocol was repeated with a new run of 12 sheep. The gases were measured within 
seconds of the set times, at a mid-point 20 minutes (25 minutes for lambs) and again 
at the end point 40 minutes (50 minutes for lambs). After the end point measure, the 
animal was released from the PAC. For each chamber, the three gases were measured 
using both the Eagle-2 device (Eagle) and a combination of FID (CH4) and FoxBox 
(CO2 and O2) devices, hereafter this combination will be referred to as FID. The historic 
data (not used in this study) only measured with FID.

Univariate animal models with restricted maximum likelihood (REML) were used to 
estimate all variance components, using WOMBAT (version 2022). The model can be 
summarised with matrix notation:

y = Xb + Za + e						      (1)

Where y is a vector of trait observations, for methane (CH4). Four traits were considered, 
being different measures of methane output: mid-point (20min for ewes, 25min for 
lambs) and end-point measure (40min for ewes, 50min for lambs) and measured with 
either the Eagle or the FID. Only animals with both Eagle and FID measurements at 
both time points were included. Due to differences in means and variation between 
sites, each methane rate was centred to the site mean and standardised by site 
standard deviation. The matrices X and Z are incidence matrices associated with the 
fixed effects vector b (Site.Day.Run, birth and rearing type, age, age of dam, sire breed, 
and sex), and the vector of random additive genetic effects a ~ (0,Hs2

a ), respectively. 
Heritability and genetic and phenotypic correlations between related pairs of methane 
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traits, i.e. between the two measurement devices and between the two time points, 
were estimated in bivariate analyses. 

Different measurement protocols may result in different trait heritabilities and numbers of 
animals measured and these parameters were used to predict the accuracy of genomic 
prediction. The first equation of Daetwyler et al. (2008), was used for this purpose 

									         (2)

Where, l is the ratio (Me/T) of number of observed phenotypes (T) to the number of 
effective chromosome segments and h2 is the heritability. Assuming M = 50,000 SNP 
markers, Ne is effective population size = 150, L is average chromosome length of 
1 Morgan and k is the number of chromosomes = 27, such that the effective number 
of chromosome segments was 8,100, calculated as Me = 2NeLk. The heritabilities 
used were from the genetic parameters estimates from the univariate analyses. 
The number of animals tested was based on measurements to be made during this 
project (10,000 animals), if historic data can be included (17,000 animals), if at least 
2,500 animals are measured every year after the conclusion of this project (29,500, 
total animals after 5 years), and the previous scenarios repeated if an additional 
40% more animals could be recorded with time saved with short measurement 
durations (14,000 with current project, 21,000 with historic added, 38,500 with future 
measurements). 

The relationship between short measurements (20, and 25 minutes) and long 
measurements (40 and 50 minutes) was very strong for both Eagle and FID devices. 
(Figure 1). This is an indication that the methane production during the time in the PAC 
is relatively constant. It also suggests the duration of measurement in the PAC could 
potentially be decreased. Historic projects used a range of measurement durations, 
these results suggest that the current and historic datasets could be combined 
regardless of the measurement duration used.

The relationship between measurement devices (Eagle and FID) was also very strong 
for both the short measurement and long measurement durations (Figure 2). The 
reason for measuring with both devices in this project, was to ensure that the Eagle 
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Figure 1. Relationship between methane rate (ml/min) measured with a short duration (mid-point 20 or  
25 minutes) and long duration (end-point 40 or 50 minutes) with either the Eagle (Left) or FID (Right). 
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point 20 or 25 minutes) and long duration (end-point 40 or 50 minutes) with either the Eagle 
(Left) or FID (Right).  
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device was measuring the same trait as the historic data which used the FID. These 
results support that both devices are measuring the same trait. Only measuring with 
one of the devices for the remainder of the project could simplify the protocol, reduce 
labour, and consumable costs.

The variance components and estimates of heritability (0.15 to 0.19) were not 
significantly different regardless of measurement duration or measurement device 
(Table 1). The Eagle device tended to have lower estimates of heritability, the shorter 
measurement durations also tended to have lower estimates of heritability. This could 
be due to the lower sensitivity of the Eagle device, and the higher precision of the FID 
capturing more variation between animals, similarly the longer measurement duration 
allows for more variation to be captured. The genetic correlation between measurement 
durations was not different from one, with phenotypic correlations of 0.80 ± 0.01 (Eagle) 
and 0.82 ± 0.01 (FID). This indicates that the measurement durations are genetically 
the same trait. Furthermore, the genetic correlation between Eagle and FID was 0.96 
± 0.02 for the short duration and not different to one for the longer durations, indicating 
that the two devices are also measuring the same trait. This suggests that the protocol 
could be simplified by only measuring with the Eagle. This also implies that datasets 
with measurements with different devices or with different measurement durations 
could be combined in a single genetic evaluation. This provides the confidence that the 
historic data only measured with the FID is measuring the same trait as more recent 
projects that use the Eagle, and that future projects only need to use the Eagle. Further 
investigation which includes both recent and historic datasets is needed. 

Figure 2. Relationship between methane rate (ml/min) measured with either Eagle or FID for a short duration 
(20 or 25 minutes) (Left) and long duration (40 or 50 minutes) (Right).

 

 
Figure 2. Relationship between methane rate (ml/min) measured with either Eagle or FID for 
a short duration (20 or 25 minutes) (Left) and long duration (40 or 50 minutes) (Right). 
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Trait (ml/min) N 𝑥̅𝑥 ± SD1 2e 2a h2 
Eagle Short 3,729 0.00 ± 1.00 0.43 0.08 0.15 ± 0.04 
FID Short 3,729 0.00 ± 1.00 0.44 0.09 0.18 ± 0.04 
Eagle Long 3,729 0.00 ± 1.00 0.39 0.08 0.17 ± 0.04 
FID Long 3,729 0.00 ± 1.00 0.40 0.09 0.19 ± 0.04 

1Each site was centred to the mean and standardised by standard deviation. 
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If higher heritabilities with more accurate devices or longer recording periods are 
realised, higher accuracies of genomic prediction would be achieved by measuring 
more animals but with shorter measurement durations (Table 2). Assuming the protocol 
continues to measure with FID and the heritability is higher (0.19), an accuracy 
of genomic prediction of 0.44 would be achieved at the completion of this project 
(10,000 animals measured). However, if only the Eagle is used and a lower heritability 
of 0.17 is realised, the accuracy of genomic prediction will also be slightly lower at 
0.42, and with the shorter measurement duration the accuracy would be 0.40 due to 
the lower heritability of 0.15. If the extra time from measuring for only 20 minutes was 
used to measure 40% more animals (14,000) the accuracy of prediction would be 
higher at 0.45. The current estimates of heritability are not significantly different, if we 
assumed the Eagle long and Eagle short both had a heritability of 0.17, the accuracy 
of genomic prediction is further increased for Eagle short to 0.48. This trend continues 
if historic data is added or with expected measurement goals in the future.

While the shorter protocols allow for more animals to be measured and to increase the 
accuracy of genomic prediction, it does not consider the logistical issues that come with 
phenotyping more animals. As it is not possible to retrospectively measure for longer 
durations it is recommended that the current protocol not be changed. However, labour 
is a key limiting factor and the shorter measurement duration would significantly reduce 
these costs per animal, if the extra time is not used to measure additional animals. 

Power calculations

Table 2. Accuracy of genomic prediction using different protocols 
of recording.Table 2. Accuracy of genomic prediction using different protocols of recording.  

 

Device h2 Duration 
Number of 

animals 
Accuracy of 
prediction 

FID 0.19 40min 10,000 0.44 

FID 0.19 40min 17,000 0.53 

FID 0.18 20min 10,000 0.43 

FID 0.18 20min 17,000 0.52 

Eagle 0.17 40min 10,000 0.42 

Eagle 0.17 40min 17,000 0.51 

Eagle 0.17 40min 29,500 0.62 

Eagle 0.15 20min 10,000 0.40 

Eagle 0.15 20min 14,000 0.45 

Eagle 0.15 20min 21,000 0.53 

Eagle 0.15 20min 38,500 0.65 

Eagle 0.17 20min 14,000 0.48 

Eagle 0.17 20min 21,000 0.55 

Eagle 0.17 20min 38,500 0.67 
 

The largest challenge for prediction of breeding values for methane based on genomic 
testing is the phenotyping of enough animals to form a reference population. We 
demonstrated that measurement with the Eagle is sufficiently accurate to replace the FID 
and FoxBox devices. The amount of time each animal is in the portable accumulation 
chamber can be shortened to about 20 min without losing measurement accuracy and 
could be considered to allow phenotyping of additional animals.

Conclusion
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The aim of the study was to determine the intensity of greenhouse gas (GHG) emissions 
from the milk production of three sheep breeds in Slovenia, to identify the trends and 
to determine the main impacts on greenhouse gas emissions. Based on information 
on milk yield, protein, fat and lactose content, average body mass of each breed, litter 
size, and lambing interval, we estimated methane and nitrous oxide emissions for the 
period 2010-2022. Emissions were estimated for 21,655 lactations. GHG emissions 
were expressed in carbon dioxide equivalents. Emission intensity was expressed as 
emissions per kg of milk produced. Enteric methane contributed to almost 92% of the 
total GHG emissions. Methane from manure stores contributed about 2% to total GHG 
while the total contribution of nitrous oxide was about 6%. 

The differences in the intensity of GHG emissions among sheep were fivefold, ranging 
from about 0.7 to more than 3.6 kg of CO2 equivalent per kg of milk. On average, 
the emission intensity expressed in kg CO2 equivalent per kg milk was 1.555 for 
Bovec sheep, 1.379 for Improved Bovec sheep, and 2.026 for Istrian Pramenka. 
The intensity of GHG emissions decreased between the first parity (1.682 kg CO2 
equivalent per kg milk) and the fourth parity (1.534 kg CO2 equivalent per kg milk) and 
then gradually increased until the tenth parity (1.714 kg CO2 equivalent per kg milk). 
The emission intensity decreased with increasing litter size. The average emission 
intensity, expressed in kg CO2 equivalent per kg milk, was 1.639 for sheep delivering 
single lambs, 1.442 for sheep delivering twins, and 1.241 for sheep delivering triplets. 

The emission intensity increased with increasing lambing interval from 1.430 kg CO2 
equivalent per kg milk for sheep with a lambing interval between 280 to 314 days to 
1.769 kg CO2 equivalent per kg milk for sheep with lambing interval between 416 to 
450 days. This means that the total milk yield of sheep with a longer lambing interval, 
was not high enough to compensate for the higher maintenance requirements of these 
sheep. The intensity of GHG emissions from milk production in flocks with controlled 
sheep varied over the years (ranging from 1.522 kg CO2 equivalent per kg of milk in 
year 2021 to 1.657 kg of CO2 equivalent per kg of milk in years 2013 and 2014). Overall, 
the intensity of GHG emissions decreased by around 6% during the study period. To 
summarise, some fertility traits are correlated with milk production and consequently 
also with the intensity of GHG emissions. In particular, a relatively short lambing interval 
could reduce the intensity of GHG emissions by increasing daily milk production.

Keywords: milk yield, litter size, parity, lambing interval, trends.  
Presented at the ICAR Anual Conference 2024 in Bled at the Session 11: Methane 
Emission-Free Communications: Genetics, Environmental, and Life Cycle 
Assessment Studies
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Livestock production contributes to anthropogenic (human) greenhouse gas (GHG) 
emissions. Globally, small ruminant production contributes 6.5% of all emissions in 
livestock production (Opio et al., 2013). Major greenhouse gases produced by small 
ruminants are methane (CH4) and nitrous oxide (N2O). While methane is produced both 
by fermentation in the digestive tract (enteric methane) and by manure management, 
the main source of emissions of nitrous oxide in small ruminant production is the 
manure management (Opio et al., 2013). In 2023, a study about GHG emissions from 
milk production of three Slovenian goat breeds was made. Still, no study about GHG 
emissions in sheep production has been prepared in Slovenia. The present study was 
conducted to determine the intensity of GHG emissions from milk production of three 
sheep breeds in Slovenia (Bovec sheep, Improved Bovec sheep and Istrian Pramenka), 
to identify the trends, and to determine the main impacts on the GHG emissions.

Records were provided by the Slovenian breeding programs for dairy sheep collected 
from the year 2010 to 2022. Data about animal breed, flock, lambing date, litter size, 
parity, date of the end of lactation and records of milk recording were acquired from the 
Central Database for Small Ruminants in Slovenia. GHG emissions were estimated on 
an annual basis. Methane emissions from enteric fermentation were calculated based 
on the net energy requirements (IPCC, 2019). The sum of net energy for maintenance, 
activity, lactation, pregnancy and wool growth was considered for the estimation of 
gross energy intake. Methane emissions from manure management were estimated 
based on the amount of daily volatile solid excreted (VS), maximum methane producing 
capacity for manure produced (Bo) and methane conversion factors for each manure 
management system (MCF). The estimation of direct and indirect nitrous oxide 
emissions based on the assumption that each sheep excretes 15.5 kg of nitrogen per 
year (EMEP, 2019) and was used only to estimate full GHG emissions in dairy sheep. 
Greenhouse effect of methane and nitrous oxide emissions were expressed in carbon 
dioxide equivalents (CO2 eq). To calculate GHG emissions expressed in CO2 eq, 
methane emissions were multiplied by GWP100 factor 28 while nitrous oxide emissions 
were multiplied by GWP100 factor 265. GHG emission intensity was calculated as the 
ratio of the quantity of GHG emissions and total milk yield.

The intensity of GHG emissions by sources is presented in table 1. Enteric methane 
contributed almost 92% to the total GHG emissions. Total contribution of nitrous oxide 
was around 6%, while the methane from manure stores contributed around 2% to total 
GHG. These findings are confirmed by Gerber et al. (2013) who reported that emissions 
from manure were very low because excretes of small ruminants are mainly deposited 
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Table 1. Intensity of greenhouse gas (GHG) emissions by sources
Table 1. Intensity of greenhouse gas (GHG) emissions by sources. 
 
 Mean S.D. Minimum Maximum 

GHG emission 
intensity (kg CO2 

eq/kg milk) 

Enteric methane 1.457 0.383 0.655 3.302 
Methane from manure 
stores 

0.027 0.007 0.012 0.062 

Nitrous oxide from 
manure stores 

0.090 0.032 0.025 0.253 

Indirect nitrous oxide 0.013 0.004 0.003 0.036 
Total 1.587 0.426 0.695 3.636 
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on the pasture. The differences in the intensity of GHG emissions among sheep were 
fivefold, ranging from about 0.7 to more than 3.6 kg of CO2 equivalent per kg of milk.

The intensity of GHG emissions by sheep breed is presented in table 2. The intensity 
of GHG emissions was the highest in the Istrian Pramenka (2.026 kg CO2 eq/kg milk) 
and the lowest in Improved Bovec sheep (1.379 kg CO2 eq/kg milk) while the intensity 
of GHG emissions was slightly higher in Bovec sheep (1.555 kg CO2 eq/kg milk). The 
relatively high intensity of GHG emissions in Istrian Pramenka is due to low total milk 
yield as well as high dry matter content of the milk compared to the other two breeds.

Table 3 shows the intensity of GHG emissions by litter size. The emission intensity 
was the lowest in sheep delivering triplets (1.241 kg CO2 eq/kg milk) and the highest 
in sheep delivering single lambs (1.639 kg CO2 eq/kg milk) which is a consequence 
of increasing total milk yield with increased litter size.	

The intensity of GHG emissions by parity is shown in figure 1. The emission intensity 
decreased between the first parity (1.682 kg CO2 eq/kg milk) and the fourth parity 

Table 2. Intensity of greenhouse gas (GHG) emissions by the sheep breed.

Table 3. Intensity of greenhouse gas (GHG) emissions by the litter size.
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 Breed 

Bovec sheep 
Improved Bovec 

sheep 
Istrian Pramenka 

GHG emission intensity (kg CO2 
eq/kg milk) 1.555 1.379 2.026 

 
   
Table 3. Intensity of greenhouse gas (GHG) emissions by the litter size. 
 

 Litter size 
Single lambs Twins Triplets 

GHG emission intensity (kg CO2 eq/kg milk) 1.639 1.442 1.241 

 
  

Figure 1. Intensity of greenhouse gas emissions by parity.
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Figure 2. Intensity of greenhouse gas emissions related to lambing interval.

Figure 3. Intensity of greenhouse gas emissions by the year.
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(1.534 kg CO2 eq/kg milk) and then gradually increased until the tenth parity (1.714 kg 
CO2 eq/kg milk).

Figure 2 shows the intensity of GHG emissions related to lambing interval of sheep. It 
could be noticed that the intensity of GHG emissions increased with increasing lambing 
interval, from 1,430 CO2 eq/kg milk in ewes with lambing interval of 280-314 days to 
1,769 CO2 eq/kg milk in ewes with lambing interval of 416-450 days. These results 
indicate that total milk yield of sheep with extended lambing interval was not high 
enough to compensate the higher maintenance requirements of these sheep.

GHG emission intensity trends in the period 2010-2022 are presented in figure 3. 
The intensity of GHG emissions from milk production in flocks with sheep in breeding 
programs varied over the years (ranging from 1.657 CO2 eq per kg of milk in years 
2013 and 2014 to 1.522 kg CO2 eq per kg of milk in the year 2021), but decreased 
overall by 5.9 % during the study period. 

We conclude that the selection for high milk production of dairy sheep could be a 
useful tool to reduce the intensity of GHG emissions. Furthermore, some fertility traits 
such as lambing interval, parity, and litter size are correlated with milk production and 
consequently with the intensity of GHG emissions as well. In particular, relatively short 
lambing interval could significantly reduce the intensity of GHG emissions.
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The aim of this paper is to compare the performances of different methane (CH4) 
measurement techniques, to estimate some genetic parameters and highlight CH4 
phenotyping methods used in the Nordic Red cattle (RDC) in Finland. Data were 
from CH4 measurements of RDC cows in Jokioinen dairy research farm of the Natural 
Resources Institute Finland (Luke). Three CH4 measurement techniques were used 
and in total 32, 137 and 310 cows had daily average CH4 measurements from cattle 
respiration chamber (RC), GreenFeed (GF) and F10 multi gas analyser (F10 sniffer, 
Gasera Ltd, Turku, Finland), respectively. 

For comparison among techniques, data from simultaneous CH4 measurements 
by any two techniques and Lin’s concordance analyses were used for comparative 
assessment. Estimates of genetic correlations from repeatability animal models were 
used to assess the association of CH4 phenotypes with some production and functional 
traits included in the dairy cattle breeding goals. Methane phenotypes: CH4 production 
(MeP=CH4 g/day), CH4 yield (MeY= g CH4/kg DMI), CH4 intensity (MeI=g CH4/kg 
ECM) and residual CH4 production (RMP) were considered. Production traits: energy 
corrected milk (ECM), metabolic body weight (mBW), residual feed intake (RFI) and 
dry matter intake (DMI) were included in the analyses. 

The mean MeP, MeY and MeI from RC were 453.0±55, 21.3±1.4, 17.1±1.6 whilst from 
GF were 467.1±61, 21.6±1.5 and 14.8±1.8, respectively. Corresponding means from 
the F10 technique were 400.1±32.7, 20.6±4.3 and 13.9±3.5. The Lin’s concordance 
correlation coefficient for MeP between the RC and GF techniques were 0.70. Whereas 
the 95% confidence interval of the Lin’s concordance correlation coefficient for MeP 
between the RC and F10 techniques ranged from 0.40 to 0.85. Heritabilities using 
data from F10 measurement for traits: MeP, MeY, MeI and RMP were 0.04, 0.04, 
0.08, and 0.16, respectively. Genetic correlations between MeP and production traits: 
ECM, mBW, RFI and DMI were moderate to high positive with 0.42, 0.67, 0.48 and 
0.49, respectively. 

Some disparities in the estimates of CH4 phenotypes from different techniques were 
observed. In view of the scarcity of individual animal CH4 data, to make effective use of 
every available CH4 measurements in livestock, methods and tools should be developed 
for integrating records from different techniques into standardised and harmonised set.

Keywords: methane, dairy cattle, measurement methods, heritability, correlations, 
concordance analyses. 
Presented at the ICAR Anual Conference 2024 in Bled at the Session 11: Methane 
Emission-Free Communications: Genetics, Environmental, and Life Cycle 
Assessment Studies
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Attempts to lower the environmental footprint of milk production needs a sound 
understanding of the basis of CH4 emissions from the dairy production systems. Accurate 
and reliable CH4 measurements are therefore important not only for understanding of 
the basis of livestock system CH4 emissions, but also for national inventory and to 
identify potential mitigation strategies. However, the accurate measurement of CH4 
emissions particularly from individual animals is difficult and expensive (Pickering 
et al., 2015, Negussie et al., 2017). As a result, so far, routine measurements CH4 
and large-scale recordings are rare. One of the main reasons for this has been the 
lack of accurate, low-cost, portable, and non-invasive methods that are also suitable 
for application on commercial farms. Lately, with the advances in digital and sensor 
technologies there has been a gradual rise in new and advanced applications for CH4 
measurement. There is, therefore, a need to understand the comparative performances 
of the different techniques and the associated challenges and opportunities to develop 
suitable CH4 phenotyping strategies for management, targeted nutritional studies or 
genetic selection. The aim of this paper is to compare the performances of few of the 
widely used CH4 measurement techniques and to estimate some genetic parameters 
for CH4 output traits in the Nordic Red cattle (RDC) in Finland.

To evaluate the performances of GF in measuring CH4 emission compared to respiration 
chambers, thirty-two lactating Nordic Red cows (RDC) were used. Measurements of 
CH4 emission were done using two GF units and cattle respiration chambers (n = 4) 
in a complete block design (8 blocks). The experimental period for every block lasted 
for 5 weeks; in the first 2 weeks the cows were measured in GF units, on the 3rd week 
cows were measured in the chambers and on the 4th and 5th weeks they were measured 
again in the GF units. 

The cows were fed a grass silage-based diets with 55:45 forage to concentrate ratio. The 
data collected from the study was edited in that GF records above or below 2.5 × SD of 
all measurements for every cow over 4 weeks period were considered as outliers and 
were deleted resulting in removal of 217. In a similar but separate study, F10 multigas 
analyser (F10, sniffer) was compared to respiration chambers (n = 4) using twenty‑one 
first lactation RDC cows to assess the agreement between the two techniques. Here 
CH4 measurements on cows were taken in a three-weeks sequence, where a one‑week 
F10 measurements was followed by another one-week CH4 measurements in the 
chamber which was then followed by a one-week F10 measurements. 

Data on CH4 measurements of twenty-one cows from the two techniques were 
made available for analysis. In both comparative assessments of CH4 measurement 
techniques: the GF versus respiration chamber and F10 sniffer versus respiration 
chambers, the agreement between the techniques was assessed using the Lin’s 
concordance correlation analyses (Lin, 1989). Data on CH4 measured from a relatively 
large number of RDC cows using the F10 technique was then used to estimate genetic 
parameters for the different CH4 output traits and to assess their genetic and phenotypic 
associations with some production traits. 

Data was from 309 RDC cows including 13,573 weekly average records. Production 
traits were energy corrected milk (ECM), metabolic body weight (mBW), residual 
feed intake (RFI) and dry matter intake (DMI). Methane phenotypes included were: 
CH4 production (MeP=CH4 g/day), CH4 yield (MeY = g CH4/kg DMI), CH4 intensity 
(MeI= g CH4/kg ECM) and residual CH4 production (RMP). Univariate and bivariate 
repeatability animal models were used for the estimation of heritabilities and genetic 
correlations between traits, respectively. The models included fixed effects of age, 
feeding kiosk number, lactation week, measurement year-month and random permanent 
environment and animal effect.
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Respiration chambers are calibrated to be accurate and precise, and are the 
gold standard for benchmarking new methods (Garnsworthy et al., 2019). Where 
an alternative method may be cheaper, less invasive, easier to implement, or 
have a wider scope of applications, it is of value to assess their relative accuracy 
and agreement with the gold standard. In actual comparison between methods 
simultaneous repeated measures per cow with two or more techniques are required 
in order to establish agreement between the techniques. In such comparisons, it is 
also important to have short time interval between repeated measures per subject 
to ensure that the underlying biology of the cow has not changed (Garnsworthy 
et al., 2019). 

The main difficulty faced in most comparisons involving CH4 measurement 
techniques is that not all techniques can be recorded simultaneously on the 
same individual and the methane emission of cows changes both throughout the 
day and over the lactation period. In such cases, either cross-over designs are 
needed, or else matched-pair repeated measures designs. In both cases, the Lin’s 
concordance correlation analysis (Lin, 1989) is useful to validate and establish 
agreement between any two methods. 

Lin’s concordance analysis computes agreement on a continuous measure 
obtained by two methods. It is widely used in validation studies because of its 
ability to combine measures of both precision and accuracy to determine how far 
the observed data deviate from the line of perfect concordance. In this study, the 
overall average daily CH4 emission using GF units was 467 ± 61.4, g/d and was 
453 ± 55 g/d for respiratory chambers. For CH4 production, the Lin’s concordance 
correlation coefficients between the GF and chamber was 0.68. 

On the other hand, in the F10 sniffer versus chamber comparison, the concordance 
correlation coefficient for the first week before chamber F10 measurements was 
0.70 with 95% lower and upper confidence limits of 0.41 and 0.85, respectively. 
Whereas the concordance correlation coefficient for the third week after chamber 
F10 CH4 measurements was 0.69 with corresponding lower and upper confidence 
limits of 0.37 and 0.86, respectively. 

The concordance correlation coefficient for combined before and after chamber 
F10 measurements was 0.84 with the 95% lower and upper confidence limits of 
0.65 and 0.93, respectively. Here the indications are that when the week before 
and week after chamber F10 CH4 measurements were combined, the agreement 
between the methods has markedly improved. The result shows that a combined 
weekly mean F10 measurements taken in a week interval can provide a much 
closer prediction of the respiration chamber measurements. 

Comparing different CH4 measurement methods, Garnsworthy et al., (2019) 
reported that for the methods with repeated measures per cow, the mass flux-based 
methods had the highest repeated measures correlations which outperformed 
the concentration-based methods. They have reported a concordance correlation 
coefficient of 0.87 and 0.81 for comparison between SF6 versus chamber and GF 
versus chamber which is close to the results obtained in this study. 

Genetic selection provides a reliable route towards permanent and cumulative reductions 
in quantitative traits such as enteric CH4 emissions. This requires estimation the amount 
of available genetic variations for the CH4 traits and their genetic associations with other 
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dairy breeding goal traits. Unfortunately, such estimates particularly for dairy cattle are 
rare in literature. In this study, the mean MeP, MeY and MeI from the F10 technique 
CH4 measurements were 400.1±32.7 g/d, 20.6±4.3 g/kg, 13.9±3.5 g/kg. The estimates 
of heritability for the CH4 output traits: MeP, MeY, MeI and RMP were 0.04, 0.04, 0.08, 
and 0.16, respectively. 

The genetic correlations between MeP and production traits: ECM, mBW, RFI and 
DMI were moderate to high positive with 0.52, 0.67, 0.48 and 0.49, respectively. The 
estimated genetic associations among the traits ranged from moderate to high and 
are in line with literature estimates. Analysing a combined dairy cows data from four 
countries Manzanilla-Pech et al. (2021) reported heritability (SE) for MeP of 0.21 (0.04), 
and heritabilities of 0.30 and 0.38, respectively for the MeY and MeI, respectively. 
Difford et al. (2020) on the other hand reported 0.26 for CH4 concentration (in ppm) 
for Danish Holstein, whereas Breider et al. (2018) reported 0.33 for MeP using SF6 
in Australian Holstein. 

Compared to these literature estimates, our estimates of heritability for MeP is slightly 
lower than the reported estimates for Holstein cattle. However, our estimate is in line 
with an earlier estimate obtained on part of the same data. Any disparity between 
the present estimates and above cited literature reports could be in part due to the 
methods of CH4 measurement, data size, the population under consideration and the 
model used for the evaluation.

In general, results from comparing the performances of different methane measurement 
methods have shown some differences. The main question is if we measure CH4 by 
sniffer or by GF or respiration chamber are they the same phenotype. The answer for 
this is clear and particularly in analyses involving animal evaluations, efforts should 
be made, and methods should be developed to standardize and harmonize CH4 
measurements coming from the different methods. This enables us to make effective 
use of the small, scattered, rare and unique CH4 data sets for accurate estimation of 
the genetic merit of animals and planning mitigation strategies. 
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In 2013, in Polish Federation of Cattle Breeders and Dairy Farmers, the new service 
was introduced - selecting cows which are in a state of subclinical ketosis (SK). This 
method is based on checking beta-hydroxybutyrate and acetone levels in milk sample, 
taken during test day. Those results constitute components for a logistic regression 
model, which indicates the probability of ketosis incidence. Above specific threshold, 
cow is marked on reports delivered to farmer. During period of 10 years, the incidence 
of SK in cows decreased with each subsequent year. The incidence of SK in cows is 
influenced, among other things, by milk yield in the herd and the size of the herd, as 
well as the housing system. The lower the herd efficiency and the smaller the herd 
size, the higher the incidence of SK. The results indicate a constant improvement in 
the health situation of recorded cows in Poland, in the context of the frequency of 
subclinical ketosis. This is due to breeders expanding their knowledge about nutrition, 
prevention and good practices related to the keeping of dairy cows, as well as greater 
awareness of the negative effects of metabolic diseases.

The data for analysis was downloaded from the Fedinfo database, belonging to the 
PFCBDF, in which the results of test milkings carried out as a part of milk recording 
are collected and processed. Set 1 contained data on milk samples taken from cows of 
various breeds, mainly the Holstein-Friesian breed, from 2014-2022. Set 2 contained 
herd data (average number of cows, average yield and location). Cows marked with 
K! index in Fedinfo were probably in a state of ketosis on test day. Sensitivity and 
specificity of the method are 0.7 and 0.9, respectively (7). 

Based on the K! index prevalence in the herd, as well as the herd size, the probable 
prevalence of SCK in the herd is calculated. If it exceeds 10%, herd is at risk of SCK. 
If this indicator exceeds 20%, the herd is considered to be at high risk of SCK. Data 
analysis and graphs were performed using the R language (https://www.r-project.org/) 
and the RStudio program. To check the relationship between the health status of a 
cow and the size and average milk yield of the herd, the chi-square test and measures 
based on this test were used, including the V-Cramer and the contingency coefficients.

The share of primiparous cows was 33%, cows in the second lactation 26%, and in 
the third and beyond - 41%. The animals were on average in 31.7 DIM, with a daily 
milk yield of 31.97 kg (Table 1).
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The median for the parity was 2. The average number of animals per herd was 43 (from 
1 to 1546), and the average milk yield of cows on test day was 24.3 kg. Since the 
introduction of SCK monitoring in 2013, the prevalence (cows with the K! index) in the 
recorded population has decreased. However, there is a slight increase in this frequency 
in 2022. In all parity groups, there has been a continued tendency to reduce the share 
of the K! cows. Within the ≥ 3rd lactation cows, the share of such cows was higher 
than in younger cows (Figure 1). 

Table 1. The share of primiparous cows

 
Table 1. The share of primiparous cows 
 

Variable n Average Median Minimum Maximum SD CV 
Number of samples        

All 10 631 322       

Primiparous cows 3 554 722       

2nd lactation cows 2 761 429       

From cows in 3rd and 
further lactation 4 315 171       

Parity  2,54 2 1 22 1,7 65,9 
Days in milk  31,7 32 5 60 16,3 51,6 
Daily milk yield, kg  31,97 31,0 1 107 9,6 29,9 
Number of records 
containing farm data 1 651 657         

Number of cows in herd   42,53 30 1 1546 56,6 133,1 
Average milk yield on 
test day/per whole herd, 
kg 

 20,33 20,3 0,2 61,3 5,4 26,5 

Average milk yield on 
test day/milked cows, kg  

 24,30 23,4 2,3 61,9 5,7  23,4 

 

 

  

 
Figure 1.Tthe share of 3rd lactation cows compared to  younger cows. 

  

Figure 1.Tthe share of 3rd lactation cows compared to  younger cows.
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Figure 2. Percentage of cows suspected of being in the SCK state.

 

 
Figure 2. Percentage of cows suspected of being in the SCK state. 

  

 

 
Figure 3. Risk of SCK by herd classes. 

  

Figure 3. Risk of SCK by herd-size classes.
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In 2022, the number of the K! cows between 5 and 7 DIM decreased faster than in 
the corresponding group in 2014. In 2014 19.6% of cows between 5 and 7 DIM were 
suspected of being in the SCK state (in 2022 13.6% cows; Figure 2). The K! cows were 
the most frequent among the lowest producing cows, i.e. ≤ 10 kg/d. As the daily milk 
yield increased, the prevalence of SCK decreased and the relationship was significant, 
although very weak (p-value = 0.0005, Cramer’s V coefficient = 0.143, contingency 
coefficient = 0.142).  The share of herds at risk or high risk of ketosis has decreased 
from year to year. Herds with 20 to 49 cows were at the highest risk of SCK, and the 
relationship was significant, although very weak (p-value = 0.0004998, V-Cramer 
coefficient = 0.045, contingency coefficient = 0.078). SCK occurred least frequently in 
herds with over 150 animals (Figure 3). 

SCK most often occurred in herds with an average daily milk yield 10.1-20 kg and 
20.1‑30 kg, while the most productive herds were characterized by a low share of the K! 
cows (Figure 4). The ketosis status of herd and yield level were significantly, although 
very weakly, correlated (p-value = 0.0005, V-Cramer coefficient = 0.05, contingency 
coefficient = 0.088).

Compared to the average prevalence of SCK recorded in dairy cow populations in 
10  European countries, which was 11.2-36.6% (9), the prevalence of SCK in the 
Polish population was much lower. The increase in SCK prevalence in 2022 can 
probably be associated with rising inflation and prices of products and services, which 
could translate into lower standards of veterinary care, the quality of cow nutrition 
or the use of consultancy. Lower prevalence, than in the other studies (1,8,9) may 
result from different diagnosis models. Our model is very conservative and therefore 
selects significantly fewer cows in the SCK status. SCK most often occurred in older 
cows, which is consistent with the results of previous studies (3,5). The fact that SCK 
was much more common in herds with a daily milk yield of 10.1-20 and 20.1-30 kg is 

Figure 4. Risk of SCK by milk production classes.

 

 
Figure 4. Risk of SCK by milk production classes. 
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surprising, since other studies have shown that the occurrence of ketosis increases 
with increasing milk yield (2,4). The presented population data, based on a large 
amount of data, indicate that SCK is not a metabolic disorder associated with a high 
cow performance, but a disorder associated with poor cow welfare, including poor 
nutritional standards (6). In the herds with the largest number of animals, SCK occurred 
less frequently, which could be related to the fact that large farms more often use the 
services of nutritional consultants, had the opportunity to divide animals into production 
groups, and consequently adjust feed rations to the needs of cows in particular stages 
of lactation. The above results indicate a constant improvement in the health situation 
of recorded cows in Poland. This is due to breeders expanding their knowledge of 
nutrition, prevention and good practices related to the maintenance of dairy cows, as 
well as greater awareness of the negative effects of metabolic diseases. Introduction 
of this type of service contributed to the gradual reduction of the prevalence of ketosis.
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Carcass traits of Holstein, Simmental and Brown Swiss 
calves, bulls and heifers and their crossbreeds with 

Charolais, Limousin, and Belgian Blue in Slovenia

M. Voljč, M. Klopčič and S. Žgur

University of Ljubljana, Biotechnical Faculty, Department of Animal Science, Groblje 3, 
1230 Domžale, Slovenia

The effects of crossing Holstein (HOL), Simmental (SIM) and Brown Swiss (BS) cows 
with Charolais (CHA), Limousin (LIM) and Belgian Blue (BB) sires on growth and 
carcass traits were evaluated. The crossbred animals were compared with purebred 
HOL, SIM and BS animals. A total of 174,365 calves, 397,962 bulls younger than 24 
months and 160,731 heifers slaughtered in Slovenian abattoirs between 2009 and 
2022 were included in the comparison. Carcass weight was determined within 45 
minutes of slaughter. Net daily gain was calculated on the basis of carcass weight 
and age at slaughter. The conformation and fatness of the carcass were evaluated 
according to the EUROP classification system and divided into 15 subclasses. The most 
popular breed for crossbreeding was LIM, as their crossbreeds in all three categories 
of slaughtered cattle represented 72 %, crossbreeds with BBP 18 % and with CHA 
10 % of all crossbreeds. The CHA breed increased carcass weight the most (by an 
average 10 % in all three categories of slaughtered cattle, followed by BBP with 8 % 
and LIM with 6 %). The CHA breed increased carcass weight by 10 kg for calves, 40 
kg for young bulls and 17 kg for heifers, while the BBP breed increased carcass weight 
by 8, 40 and 16 kg and the LIM breed by 9, 19 and 4 kg in the three categories of 
slaughtered cattle. Net daily gain was also improved by crossbreeding, with the highest 
value again achieved by the CHA breed, which was 15 % or 71 g/day higher than the 
average of all three categories in purebred cattle. The most significant improvement 
in carcass conformation for all three categories was achieved by the BBP breed (42 % 
or 2.4 subclasses), followed by the CHA and LIM breeds (31 % and 1.8 subclasses). 
The BBP breed achieved slightly lower values (-4 % and -0.3 subclasses), while the 
crosses with the CHA (+3 % and +0.1 subclasses) and LIM (+5 % and +0.3 subclasses) 
breeds showed a higher carcass fatness than the purebred animals. The improvement 
of all carcass traits through crossbreeding was more pronounced in Holstein dairy 
cattle than in Brown Swiss and Simmental cattle.

Keywords: crossbreeding, Holstein, Simmental, Brown Swiss, beef breeds, carcass 
traits. 
Presented at the joint ICAR/INTERBULL Session: Data collection for Beef on Dairy
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In the last ten years, the number of cows and cattle as whole in Slovenia has been 
relatively stable, but the proportion of different breeds has changed considerably. The 
number of dual-purpose cows of the Simmental (SIM) and Brown Swiss (BS) breeds 
decreased, while the number of dairy cows of the Holstein (HOL) breed and beef cows 
of the Charolais (CHA), Limousin (LIM) and other beef breeds increased (Sadar et al., 
2024). Crossing of dairy and dual-purpose breeds with beef breeds can significantly 
improve both growth and carcass traits of fattening animals as well as beef production. 
The positive effects of crossbreeding differ depending on the dam and sire breeds used 
(Keane and Drennan, 2008; McGee et al., 2008, Huuskonen et al., 2014, Eriksson 
et al., 2020, Bittante et al., 2021). In Slovenia, the CHA, LIM and Belgian Blue (BBP) 
breeds have recently been used to cross SIM, BS and HOL. Therefore, the aim of our 
study was to investigate the effects of crossing our dual-purpose and dairy breeds 
(SIM, BS, HOL) with beef breeds (CHA, LIM, BBP) on growth rate and carcass traits 
in the entire Slovenian cattle population.

The study included records of animals of three different breeds, Holstein (HOL), 
Simmental (SIM), Brown Swiss (BS) and their crosses with Charolais (CHA), Limousin 
(LIM) and Belgian Blue (BBP), slaughtered in Slovenian abattoirs from 2009 to 2022. 
Three different categories of slaughtered animals were considered: young bulls aged 
12 to 24 months (A), heifers aged more than 12 months without calving (E) and calves 
aged less than 8 months (V). A total of 174,365 calves, 397,962 young bulls and 
160,731 heifers were included in the comparison (Table 1). 

The data included hot carcass weight (HCW), net daily gain (NDG), carcass conformation 
and fat content. Hot carcass weight was measured within 45 minutes after slaughter. 
Net daily gain was calculated on the basis of carcass weight and age at slaughter. 
The carcass conformation and fatness of the carcass was assessed according to the 
EUROP classification system (The Commission of the European Communities, 2008) 
and divided into 15 subclasses.

Introduction

Material and 
methods

 
Table 1. Number of animals of different breeds or crossbreeds and different categories included in the 
study. 
 

Breed A E V 
SIM 258 269 101 583 42 430 
SIM/BBP  5 228 3 614 1 369 
SIM/CHA  4 144 2 544 897 
SIM/LIM  23 108 16 022 7 711 
BS 28 589 8 758 11 383 
BS/BBP  2 431 1 628 1 028 
BS/CHA  1 212 672 377 
BS/LIM  10 628 7 500 5 182 
HOL  57 458 14 116 98 061 
HOL/BBP  2 139 1 297 1 572 
HOL/CHA  607 322 392 
HOL/LIM  4 149 2 675 3 963 
Total 397 962 160 731 174 965 

A - Young bulls, aged 12 to 24 months 
E - Heifers, aged more than 12 months with no calving recorded 
V - Calves, animals aged less than 8 months 
 
  

Table 1. Number of animals of different breeds or crossbreeds 
and different categories included in the study.
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Data were analyzed separately for each category (A, E, Z) of slaughtered animals 
using the GLM procedure of SAS (2002), where breed was included as a fixed effect 
and differences between breeds were tested using the PDIFF option.

Young bulls of the SIM breed and its crosses had the highest HCW and NDG compared 
to young bulls of the HOL and BS breeds. The greatest improvement in HCW and NDG 
was achieved in all three breeds by crossing animals with CHA breed. The improvement 

Results and 
discussion

 
Table 2: Carcass traits (LSM±SE) of Holstein (HOL), Simmental (SIM) and Brown Swiss (BS) young bulls 
(A*) and their crosses with Charolais (CHA), Limousin (LIM) and Belgian Blue (BBP). 
 

Breed 

Hot carcass  
weight 

(kg) 
Net daily gain 

(g/d) 

EUROP  
conformation 

(1 – 15) 

EUROP 
fatness 
(1 – 15) 

SIM 367.1±0.1 a 566.1±0.2 a 8.63±0.00 a 6.34±0.00 a 
SIM/BBP  379.9±1.0 b 589.7±1.4 b 10.26±0.03 b 5.58±0.03 b 
SIM/CHA  382.0±1.1 b 598.0±1.5 c 9.57±0.03 c 6.26±0.03 c 
SIM/LIM  361.9±0.5 c 564.6±0.7 d 9.33±0.01 d 6.23±0.01 c 
BS 319.5±0.4 a 488.5±0.6 a 6.43±0.01 a 6.13±0.01 a 
BS/BBP  359.7±1.4 b 551.1±2.0 b 8.97±0.04 b 5.71±0.04 b 
BS/CHA  368.6±2.0 c 565.5±2.9 c 8.53±0.06 c 6.23±0.06 ac 
BS/LIM  343.6±0.7 d 529.8±1.0 d 8.35±0.02 d 6.34±0.02 c 
HOL  314.3±0.3 a 491.1±0.4 a 5.07±0.01 a 6.16±0.01 a 
HOL/BBP  359.6±1.5 b 549.2±2.1 b 8.51±0.04 b 5.79±0.04 b 
HOL/CHA  370.2±2.8 c 568.8±4.0 c 7.89±0.08 c 6.47±0.08 c 
HOL/LIM  351.0±1.1 d 534.5±1.5 d 7.82±0.03 c 6.44±0.03 c 

*A - young bulls, aged 12 to 24 months 
LSM - Least square means; SE - standard error; ab LSM within breed of cows without 
the same superscript differ significantly (P<0.05) 
 

  
 
Table 3. Carcass traits (LSM±SE) of Holstein (HOL), Simmental (SIM) and Brown Swiss (BS) heifers (E*) 
and their crosses with Charolais (CHA), Limousin (LIM) and Belgian Blue (BBP). 
 

 Breed 

Hot carcass  
weight 

(kg) 

Net daily  
gain 
(g/d) 

EUROP  
conformation 

(1 – 15) 

EUROP  
fatness 
(1 – 15) 

SIM 278.5±0.2 a 391.6±0.3 a  7.68±0.01 a 7.73±0.01 a 
SIM/BBP  294.2±1.0 b 439.8±1.5 b 9.43±0.03 b 7.24±0.04 b 
SIM/CHA  292.4±1.2 c 433.2±1.7 c 8.65±0.4 c 7.92±0.05 c 
SIM/LIM  275.2±0.5 c 404.9±0.7 d 8.42±0.02 d 7.78±0.02 d 
BS 249.8±0.7 a  326.1±0.9 a  5.89±0.02 a 7.65±0.03 a  
BS/BBP  269.3±1.6 b 403.4±2.2 b  7.93±0.05 b 7.21±0.07 b 
BS/CHA  270.1±2.4 b 406.7±3.4 b 7.35±0.08 c 7.59±0.11 a 
BS/LIM  258.6±0.7 c  380.1±1.0 c 7.52±0.03 d 7.91±0.04 c 
HOL  262.4±0.5 a 347.3±0.7 a 4.69±0.02 a 7.45±0.02 a 
HOL/BBP  276.7±1.7 b 409.2±2.4 b 8.00±0.06 b 7.11±0.08 b 
HOL/CHA  278.3±3.5 b 415.0±4.9 b 7.35±0.11 c 7.73±0.15 a 
HOL/LIM  268.6±1.2 c 395.3±1.7 c 7.43±0.04 c 8.08±0.05 c 

* E - Heifers, aged more than 12 months with no calving recorded 
LSM - Least square means; SE - standard error; ab LSM within breed 
of cows without the same superscript differ significantly (P<0.05) 
 
  

Table 2: Carcass traits (LSM±SE) of Holstein (HOL), Simmental (SIM) and 
Brown Swiss (BS) young bulls (A*) and their crosses with Charolais (CHA), 
Limousin (LIM) and Belgian Blue (BBP).

Table 3. Carcass traits (LSM±SE) of Holstein (HOL), Simmental (SIM) and 
Brown Swiss (BS) heifers (E*) and their crosses with Charolais (CHA), 
Limousin (LIM) and Belgian Blue (BBP).
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in HCW was 4 % and NDG 6 % for the SIM breed, 15 % and 16 % for the BS breed, 
18 % and 16 % for the HOL breed. Crossbreeding SIM cows with LIM sires resulted in 
a lower carcass weight and a slightly lower net daily gain. The best conformation was 
achieved in animals crossed with the BBP breed. The most significant improvement in 
carcass conformation for all three breeds was achieved with the BBP breed, followed 
by the CHA and LIM breeds. Young bulls derived from a cross with the BBP breed 
had the lowest fatness scores. 

Crossing SIM, BS and HOL cows with CHA, LIM and BBP sires resulted in higher HCW, 
NDG and EUROP conformation in heifers, with the exception of crossing SIM cows 
with LIM sires, which resulted in lower carcass weight of SIM/LIM crosses compared to 
purebred SIM heifers. The most significant improvement in HCW and NDG in all three 
breeds was achieved with the CHA and BBP breeds. For carcass conformation, the 
most significant improvement was achieved with the BBP breed. Heifers from the SIM 
and BBP crosses had the highest conformation with, 9.43 on the scale from 1 to 15 
EUROP. The heifers from the cross with the BBP breed had the lowest fatness scores.

Crossbreeding was also found to improve the calves. Crossbreeding SIM, BS and 
HOL cows with the CHA, LIM and BBP breeds resulted in better HCW, NDG and 
EUROP conformation of the calves. In the SIM breed, the greatest improvement in 
HCW and NDG was achieved with the CHA breed, while in the BS and HOL breeds 
the improvement was the same for all crosses. The most significant improvement in 
carcass conformation for all three breeds was achieved with the BBP breed. 

The CHA breed increased carcass weight the most. The improvement was 10 % for 
all categories of slaughtered cattle, followed by BBP with 8 % and LIM with 6 %. The 
CHA breed increased carcass weight by 10 kg in calves, by 40 kg in young bulls and 
by 17 kg in heifers, while the BBP breed increased carcass weight by 8, 40 and 16 kg 
and the LIM breed by for 9, 19 and 4 kg in all three categories of slaughtered cattle. 
Crossbreeding also improved NDG, the highest was achieved with CHA breed and 
it was 15 % higher than the average of all three categories in purebred animals. The 
greatest improvement in carcass conformation was achieved in all three categories 
with the BBP breed, followed by the CHA and LIM breeds. The cross with the BBP 
breed resulted in a slightly lower carcass fatness (-4 % and -0.3 subclass), while the 
crosses with CHA (+3 % and +0.1 subclass) and LIM (+5 % and +0.3 subclass) breeds 
had a higher carcass fatness than the purebred animals.  

Table 4. Carcass traits (LSM±SE) of Holstein (HOL), Simmental (SIM) and Brown Swiss (BS) calves (V*) 
and their crosses with Charolais (CHA), Limousin (LIM) and Belgian Blue (BBP). 
 

 Breed 
Hot carcass weight 

(kg) 
Net daily gain 

(g/d) 
EUROP conformation 

(1 – 15) 
EUROP fatness 

(1 – 15) 
SIM 101.6±0.1 a  714.3±0.8 a 7.54±0.01 a  4.43±0.01 a 
SIM/BBP  110.9±0.6 b 805.8±4.5 b 9.36±0.05 b 4.36±0.04 a 
SIM/CHA  116.2±0.8 c 779.7±5.6 c 8.72±0.06 c 4.45±0.05 a 
SIM/LIM  113.9±0.3 d 763.5±1.9 d 8.81±0.02 c 4.58±0.02 b 
BS 94.3±0.2 a 690.8±1.6 a 6.24±0.02 a 4.08±0.01 a 
BS/BBP  105.7±0.7 b 799.1±5.2 b 8.63±0.06 b 4.21±0.05 b 
BS/CHA  104.9±1.2 b 797.6±8.6 b 8.10±0.10 c 4.25±0.08 b 
BS/LIM  104.6±0.3 b 772.4±2.3 c 8.16±0.03 c 4.48±0.02 c  
HOL  96.6±0.1 a 618.0±0.5 a 5.14±0.01 a  3.91±0.00 a 
HOL/BBP  100.9±0.6 b 705.6±4.2 b 8.11±0.04 b 4.11±0.03 b 
HOL/CHA  101.4±0.6 b 712.9±8.4 b 7.27±0.09 c 4.27±0.07 c 
HOL/LIM  101.0±0.6 b 672.3±2.6 c 7.46±0.03 c 4.40±0.02 c 

* V - Calves, animals less than 8 months old 
LSM - Least square means; SE - standard error; ab LSM within breed of cows without the same superscript letter 
differ significantly (P<0.05) 
 

Table 4. Carcass traits (LSM±SE) of Holstein (HOL), Simmental (SIM) and Brown Swiss (BS) calves 
(V*) and their crosses with Charolais (CHA), Limousin (LIM) and Belgian Blue (BBP).
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