Overview on the Status-Quo & Challenges to Reduce Methane Emissions from Livestock Systems in Africa

C. Arndt^{1*}, Mrode R.^{1,4}, Mulat, D.G.¹, Assouma, M.H.², Dossa, L.H.³, Elbeltagy, A. R.⁵, and M.M. Scholtz⁶.

23 May 2024 ICAR Meeting, Bled Slovenia

¹International Livestock Research Institute, Nairobi, Kenya

²Centre de coopération internationale en recherche agronomique pour le développement (CIRAD), Unité Mixte de Recherche Systèmes d'élevage méditerranéens et tropicaux (UMR SELMET), dP ASAP (systèmes agro-sylvo-pastoraux en Afrique de l'Ouest), Bobo Dioulasso, Burkina Faso ³Université d'Abomey-Calavi, Laboratoire des Sciences Animales (LaSA), Faculté des Sciences Agronomiques, Benin

⁴Scotland Rural College, Edinburgh, EH9 3JG, United Kingdom

⁵The African Union, Interafrican Bureau for Animal Resources (AU-IBAR), Nairobi, Kenya

⁶Agricultural Research Council – Animal Production, Irene, South Africa

Role of Livestock in Africa

- Importance of livestock
 - Livelihoods
 - Food security

- Cultural significance
- Resilience and adaptation
- Livestock is a significant source of methane (CH₄)
 - CH₄ is a greenhouse gas (GHG)
 - High Global Warming Potential (84x greater than CO₂ over 20 yrs)
 - Short-Lived Climate Pollutant (short atmospheric lifetime ~12yrs)
 - To meet the 1.5C target, CH₄ must be reduced by 11 to 30% by 2030 and 24 to 47% by 2050 compared to 2010 levels

Comparative Analysis of CH₄ Emissions by Sector

Equatorial and South Africa

Global

GHG Emissions of Sub-Saharan Livestock Value Chain

CH₄ **Dominates Livestock Emissions:**

- •68% of total GHG emissions from the livestock value chain.
 - 65% from Enteric Fermentation
 - 3% from Manure Management

Projected Population Growth and Animal Product Demand

Continent	Red meat &	milk protein	(g/capita/d)
	2012	2030	2050
Africa	7.2	8.5	9.4
Europe	28.6	30.3	30.4

- Population growth will increase demand for animal products.
- Per capita consumption of animal protein will remain low compared to Europe.
- Addressing the rising demand for animal protein in Africa is crucial for food security and economic development.

MT: Million metric tons

Source: Modified after Henchion et al., 2021 and FAO.

Research on GHG Emissions From Livestock is Limited

Enteric CH₄ Emissions

- •14 cattle studies
- •6 small ruminant studies

Manure GHG Emissions

- •6 cattle manure studies
- •0 small ruminant studies

Mitigation

- •Enteric emissions: 5 cattle and 2 sheep studies
- •Manure emissions:
- 0 studies

Source: Graham et al., 2022

Locations With Equipment to Measure Enteric CH₄

Burkina Faso

 1 GreenFeed for small ruminants & 1 for cattle

Benin

• 1 GreenFeed for sheep & cattle

South Africa

- Small ruminant chambers
- 3 GreenFeed for cattle
- SF6
- Handheld Methane Detector

Ethiopia

1 GreenFeed for cattle

Kenya

- Cattle and small ruminant chambers
- SF6 under development

Tanzania

•Handheld Methane Laser

Strategies for Reducing Enteric CH₄ Emissions by Feeding System

Zero-grazing production systems

Chemical inhibitors*

Tanniferous forages*

Electron sinks*

Lipids*

Concentrate

Feed, forage & forage management

Herd management*
Low-CH₄ emitting animals*

Grazing with feed supplementation

Chemical inhibitors*

Tanniferous forages*

Electron sinks*

Lipids*

Concentrate

Low-CH₄ emitting animals*

Feed, forage & forage management

Pasture and pasture management

Herd management*

Low-CH₄ emitting animals*

Grazing without feed supplementation

Tanniferous forages*

Pasture and pasture management

Herd management*

Low-CH₄ emitting animals*

Source: Modified Breakthrough Report, 2023.

^{*} Mitigation Strategies that reduce absolute emissions without increasing productivity. **Bold** Mitigation Strategies that are relevant across system

Feed and Forage Managment

Past efforts: Supplementing cattle with crop co-products

Enteric CH₄ per kg of intake reduced by > 20% rangeland forage and *Panicum maximum* hay was supplemented with cereal and legume co-products

On-going research: The high potential Shrub forage banks to reduce enteric CH₄ (HiFoBREC)

- The use of shrub and tree legumes to reduce enteric CH₄
- Production of emission factors for local GHG inventories

Tanniferours Forages

- Tannins reduce enteric CH₄ by inhibiting methanogens, altering fermentation patterns,...
- Decreases absolute CH₄ by 12% and CH₄/product by 18% (Arndt et al., 2022)

Challenges to consider:

- Decreases fiber digestibility by 7% (Arndt et al., 2022)
- Can decrease feed intake, palatability, protein digestion & animal production

On-going efforts: Low-Methane Forages

Low-Methane Forages – Project Overview

Herd Management

- Seasonal breeding
- Animal health
- Feed management

- Grazing management
- Nutritional management

On-going efforts: Matching Livestock Breeds to the Environment

Matching Livestock Breeds to the Environment

- Overall CH₄ emissions/animal likely to increased
- CH₄/product will be reduced (preliminary suggest by 6-12%)

Climate Change

Adaptation + Mitigation + Resilience

Adaptation	Mitigation	Resilience
 Use of indigenous breeds 	Improved cow-calf efficiency	 The effective use of crossbreeding –
• Crossbreeding	Selection for alternative measures of efficiencyCrossbreeding	resilience to variation in climate
Maintain production under climate change	➤ Lower carbon footprint	Recover quickly, bounce back, toughness

Low CH₄ Emitting Animals

Potential to decrease in CH₄/animal ≤ 15% (FAO, 2023)

On-going efforts: Enviro-Cow Project (Ethiopia and Tanzania, 3-yr project)

Aim: Address climate challenges in African livestock production

Objective

- <u>Direct Approach</u>: Selection for low CH₄ emitters
- Indirect Approach: Improve animal efficiency
- Goal: Construct selection index for animals with less impact on the environment, better feed utilization and productivity

Enviro-Cow Project (Results so far)

Direct approach to reduce enteric CH₄

- •CH₄ data collected from 900 cows (230 dairy farms) using Laser CH₄ Detector
- •Heritability estimates for CH₄ emissions: ~0.20 (ppm-methane)
- → Indicates genetic variation for direct selection
- •Prediction of CH_4 from milk fat%, protein%, and Mid-Infra-Red provides an accuracy of $^{\sim}0.43$

Indirect approach to reduce enteric CH₄

•Selection of animals with low metabolic body weight, as this reduces feed needed for maintenance

Combination of Mitigation Practices

One strategy alone will not meet climate targets.

 CH_4 must be reduced by **11 to 30%** by 2030 and **24 to 47%** by 2050 compared to 2010 levels

Combining multiple strategies is crucial for significant mitigation.

<u>Example</u>: Modelled Effect of Climate Smart Livestock (**CSL**) Practices by combining multiple strategies

Definition CSL Practice

- 1.Increased productivity
- 2.Increase adaptation and resilience to climate change
- 3. Reduced GHG emissions

Effect of CSL Practices on Emission per Unit of Product

- Emissions per product decreased with single and multiple mitigation strategies
- Greater reductions achieved when multiple mitigation strategies are applied simultaneously

AFC: Age at first calving

FR: Fertility Rate

SPVS: Sweet Potato Vine Silage

DC: Dairy Concentrate

IFL: Improved Feeding Level

BEST BET: FR + SPVS + IFL

HERD: AFC + FR

FEED: SPVS + DC + IFL

CSR: Livestock, Climate and System Resilience

Mitigate+: Research for Low-Emission Food Systems

Source: Graham et al. under revision.

Effect of CSL Practices on Absolute Emissions

Absolute CH₄ went up in all scenarios, except AFC and DC

AFC: Age at first calving

FR: Fertility Rate

SPVS: Sweet Potato Vine Silage

DC: Dairy Concentrate

IFL: Improved Feeding Level

BEST BET: FR + SPVS + IFL

HERD: AFC + FR

FEED: SPVS + DC + IFI

Path Forward for CH₄ Reduction in Africa

Study Technical Mitigation Potential

- Determine CH₄ potential of strategies predicted to have high mitigation potential or are applicable across systems
- Test mitigation potential of multiple strategies

Address Practical Mitigation Potential

- Understand strategy acceptance and interest to adopt strategies
- Streamline efforts to align with government interests
- Understand financial implications for livestock keepers and explore solutions

SAVE THE DATE!!!

International Greenhouse Gas & Animal Agriculture Conference

Date

5 - 9 October, 2025

Website

https://ggaaconference.org/

Thank you very much for your attention!

https://mazingira.ilri.org/

Better lives through livestock

Claudia Arndt, PhD claudia.arndt@cgiar.org

The International Livestock Research Institute (ILRI) is a non-profit institution helping people in low- and middle-income countries to improve their lives, livelihoods and lands through the animals that remain the backbone of small-scale agriculture and enterprise across the developing world. ILRI belongs to CGIAR, a global research-for-development partnership working for a food-secure future. ILRI's funders, through the <u>CGIAR Trust Fund</u>, and its many partners make ILRI's work possible and its mission a reality. Australian animal scientist and Nobel Laureate Peter Doherty serves as ILRI's patron. You are free to use and share this material under the Creative Commons Attribution 4.0 International Licence © ①.

better lives through livestock

ilri.org