Genetic selection for lower methane emission in dairy cattle – ready for implementation?

Birgit Gredler-Grandl & ICAR Feed&Gas working group

47th ICAR meeting, 2024

ICAR Feed&Gas working group and collaborators

ICAR Feed&Gas

Christine Baes, Lorenzo Benzoni, Maria Frizzarin, Karoline Bakke, Raffaella Finocchiaro, Rasmus Bak Stephansen, Jan Lassen, Caeli Richardson, Jennie Pryce, Nina Krattenmacher Donagh Berry Mike Coffey Beat Bapst Amelie Vanlierde Nicolas Gengler Envew Negussie Christa Egger-Danner Franciso Penagaricano Oscar Gonzalez-Recio Filippo Miglior

Pauline Martin Kathrin Stock Marcin Pszczola Suzanne Rowe Lorna McNaughton

2021 FAO Livestock e-Methane (kt)

Tier 1 emissions

> Total enteric methane emissions from **5 major livestock species** was 97,384 (kt) in 2021.

Species	E-Methane Emissions (kt)
Beef cattle	54,973
Dairy cattle	18,550
Buffalo	11,217
Sheep	7,088
Goats	5,556

Scope – dairy cattle in Global North

Where to start?

Number of CH₄ phenotyped - Holstein cattle

Number of CH_4 phenotyped cattle – Jersey and Nordic Red breeds

9,050 Jersey, Red Dairy, Finnish Red, Norwegian Red

Jersey Irland
Jersey Denmark
Red Dairy Denmark
Crossbred Denmark
Finnish Red Finland
Norwegian Red

Number of CH₄ phenotyped cattle – Fleckvieh and Brown Swiss

1,000 Fleckvieh and 200 Brown Swiss cows with GreenFeed

Session 11: Pitch Kristina Linke

Number of phenotypes will increase!

How to measure CH₄ in dairy cattle? **Respiration chambers**

- open/closed indirect calorimetry
- Gold standard
- Not used large-scale

How to measure CH₄ in dairy cattle? **SF6 tracer gas technique – SF₆**

- Air is sampled near nostrils
- Permeation tube containing SF6 is placed in rumen
- pre-determined release rate of SF6 is multiplied by the ratio of CH4 to SF6 concentrations in the canister to calculate CH4 emission rate
- Australia, Belgium, ...

How to measure CH₄ in dairy cattle? **GreenFeed** (C-Lock Inc., Rapid City, South Dakota, USA)

- Close to Gold Standard
- Sniffer system where breath samples are provided when animals visit a bait station
- Flux
- USA, CAN, IRE, ...

How to measure CH₄ in dairy cattle? **sniffer**

- Air is sampled during feeding
- Canada, Denmark, Netherlands, Spain, Switzerland

How to measure CH_4 ?

Is methane emission heritable?

POP	method	trait	h ²	Ref
HOL NL	sniffer	ppm	0.32	Van Breukelen et al., 2023
HOL ESP	sniffer	ppm	0.20	Gonzalez-Recio et al., 2024
HOL CAN	GreenFeed	g/d	0.16	Kamalanathan et al., 2023

Genetic correlations between other traits?

Trait	dDMI	BW	CH4
dDMI	0.29 (0.05)		
BW	0.59 (0.11)	0.57 (0.05)	
CH4	0.65 (0.10)	0.50 (0.09)	0.39 (0.04)

Bakke et al., 2024

Gonzalez-Recio et al., 2024

Session 11: Anouk van Breukelen

How many cows with phenotypes do we need?

Gonzalez-Recio et. al. (2014)

17

How many cows with phenotypes do we need?

Gonzalez-Recio et. al. (2014)

18

Proxies for methane emission – multi-trait approach

Definition of methane trait in the breeding goal?

Methane production

- ■g/day
- Easy to understand
- Climate targets

Methane yield

- CH4 per unit of input
- Ratio trait
- Industry reporting

Definition of methane trait in the breeding goal?

Methane intensity

CH4 per unit of outputRatio traitIndustry reporting

Methane production

Residual methane

Expected vs observedDifficult to interpret

Feed intake / body weight

Are we ready for implementation?

200 Mejores Toros del Catálogo

N	Número	Nombre	Año	Kg.	%	Kg.	%	Kg.	Fiab.	IPP	щ	IGT	RCS	Long.	Fiab	DA	Fiab.	FPD	Fiab.	ISP	VOR	MET	IM€T	ICO	Perc
	Rumero	Hombre	nac.	Leche	Grasa	Grasa	Prot.	Prot.	Prod.				ne.	Long.	Long.		DA		FPD				Leche		T CIC.
1	CANM0012773216	SILVERRIDGE V TIMBERLAKE ET	2017	2034	-0,06	66	0,03	69	98	-0,81	1,62	0,98	112	122	65	102	76	115	82		103	110	328	1266	99
2	ESPM9204523525	NEMO G SANTI ET	2017	1444	0,18	72	0,08	55	95	1,86	1,12	1,57	126	113	59	95	68	118	73	111	97	100	287	1265	99
3	ESPM9204695956	K&L OH ROSSI GUAY	2018	752	0,42	70	0,18	43	98	0,88	2,19	1,9	119	123	59	109	68	112	94		79	66	274	1262	99
4	ESPM9204501760	LIEU THOMAIN BALTAZAR ET	2017	1132	0,26	68	0,12	49	84	1,3	1,14	1,08	119	121	55	107	65	109	55	113	92	115	286	1258	99
5	ESPM9204691049	SALUD ET	2017	1118	0,18	59	-0,02	34	93	2,88	1,35	1,64	125	120	57	100	66	114	82		89	96	263	1257	99
6	ESPM9204634816	SALVUS ET	2017	1520	-0,24	28	-0,08	40	97	1,01	1,87	1,36	132	124	57	108	66	108	88		74	100	251	1255	99
7	ESPM9204741024	PALMER ET	2018	925	-0,04	29	0,13	44	91	1,59	2,34	2,15	115	126	55	112	65	108	93		100	99	260	1253	99
8	ESPM9204828913	TIRSVAD HOTSPOT HONDO ET	2019	672	0,05	29	0,14	36	80	2	1,73	1,69	118	130	53	123	63	119	90		99	107	263	1253	99
9	ESPM9204628506	MANDY KODAK ET	2017	1736	0,12	76	0,01	57	93	0,42	0,98	1,22	118	116	55	99	65	101	55	110	109	83	282	1252	99
1	D ESPM9204595970	HUNTER K&L SV ADRIAN SALVATIER	2017	993	0,13	49	0,12	45	93	1,13	1,4	0,9	125	123	57	107	66	116	82	116	88	90	275	1252	99
1	1 840M3130915944	COOKIECUTTER LGND HUSKY ET	2017	1488	-0,08	45	-0,07	40	98	-0,95	1,92	0,93	117	135	67	114	74	102	78		96	99	278	1251	99
1	2 ESPM2704487908	GRILO SANRECAM LUCKY ET	2017	1524	0,16	72	0,09	59	85	0,93	1,22	1,21	107	112	59	103	68	109	67	109	98	108	284	1250	99
1	3 840M3128557570	ABS MEDLEY ET	2015	1296	0,25	74	0,13	56	98	0,46	0,67	0,51	108	125	74	106	78	120	78		108	106	302	1249	99
1	4 ESPM9204631171	VEKIS RISK	2017	1104	0,05	45	0,05	41	90	0,92	1,02	1	120	131	61	116	68	115	65	113	83	98	267	1249	99
1	5 840M3138310311	REDROCK-VIEW KLUTCH ET	2016	783	0,13	41	0,16	42	99	-0,91	2,28	1,33	124	131	74	120	78	114	80		86	95	260	1249	99
1	5 ESPM9204630024	BANANA JOE ET	2017	1138	0,18	60	0,11	49	93	1,29	1,18	1,15	119	119	53	112	61	106	68	110	96	103	270	1247	99
1	7 ESPM9204631169	CLEVELAND SALARIO ET	2017	1113	0,11	52	0,08	45	98	1,4	1,53	1,54	124	116	57	109	65	120	88		100	96	264	1245	99
1	B ESPM9204739617	MUGABE ET	2018	1455	-0,15	36	0,02	49	80	0,46	1,37	1,05	116	128	52	113	61	109	52		100	106	273	1245	99
1	9 ESPM9204595969	GYMNAST GENIAL ET	2017	1657	0,08	68	0,05	59	99	0,67	1,79	1,5	125	109	57	88	66	114	94	111	64	78	260	1244	99
2	0 ESPM9204631170	K&L POPPE GOAL	2017	995	0,14	50	0,05	38	99	1,52	2,07	1,83	118	121	55	105	65	95	93		115	103	255	1243	99
2	1 ESPM9204631173	SALVAT RED ET	2017	1579	-0,27	26	-0,04	46	85	1,18	1,16	0,86	131	118	55	107	65	115	55	115	88	91	252	1242	99
2	2 840M3132352752	ST GEN R-HAZE RAPID ET	2017	1055	0,37	77	0,16	51	95	1,46	1,4	1,69	96	120	69	104	76	109	79		117	104	289	1240	99

thane Efficiency!

ll make history by publishing the first evaluations for the Holstein breed. This x Alliance will make Canada the first tions aimed at reducing methane

Thank you for your attention

birgit.gredler-grandl@wur.nl

