

Network. Guidelines. Certification.

Breeding for resistance to parasites in French dairy sheep: towards an increase in resilience and sustainability of sheep dairying

Jean-Michel Astruc *

F. Fidelle, C. André, C. Grisez, L. Bordes, S. Jouffroy, P. Jacquiet * Institut de l'Elevage / French Livestock Institute - Toulouse, France

Session 7

Bled, Slovenia - Thursday, May 23, 2024

ICAR & INTERBULL MAY 19-24, 2024 SLOVENIA

Why breed for resistance to gastrointestinal nematodes (GIN) in sheep? (1/2)

- GIN ingested only at grazing through grass intake
- Significant economic losses: mortality, milk production losses, direct costs of anthelmintics pharmaceuticals
- Ecotoxicity of some anthelmintics (e.g. macrocyclic lactones): undesired effects on non-targeted fauna, coprophagous insects of the pastures mainly.

Why breed for resistance to gastrointestinal nematodes (GIN) in sheep? (2/2)

 The important adaptation capacity of the GIN has made them develop anthelmintic resistances (including multidrug resistance) => RISK OF THERAPEUTIC IMPASSE

Eprinomectin resistance in dairy sheep areas in southern France

Source:
P. Jacquiet

=> a relevant selection objective

A standardized protocol of phenotyping:

experimental infections with Haemonchus contortus

Is the protocol relevant and justified?

- FEC is a commonly used criterion to measure the resistance to parasites.
 But time-consuming and costly => rams = targeted population
- Existence of collective breeding programs in France with breeding centres and AI centres where rams have a significant impact on the population (AI).
- Haemonchus contortus is a pathogenic and thermophile GIN. Most prevalent species in France. Species always concerned in case of resistance to drugs.
- Very high genetic correlation (≈ 1) between resistance to different species of GIN
- Very high genetic correlation (≈ 0,9) between natural infections and experimental infections.
 - > Feasibility of selection for resistance to parasites

Red-Faced Manech and Basco-Béarnaise breeds: 15 years of phenotyping

Number of rams at each cohort of infection 1826 Red-Faced Manech & 520 Basco-Béarnaise

FEC (resistance) has moderate heritabilities ΔPCV (resilience) has lower heritabilities

Genetic correlations between resistance and resilience traits

Genetic correlation between RESISTANCE and RESILIENCE traits in Red-Faced Manech

Genetic evaluation and composite indexes

- Period 2017-2022 : polygenic evaluation (phenotypes and pedigree).
- Since 2023: genomic evaluation => possibility to include resistance to parasites in the genomic pre-selection step of young rams, simultaneously with other traits.

- EBVs and index provided to breed organisations:
 - FEC1 et FEC2
 - ΔPCV1 et ΔPCV2
 - FEC index = ¼ FEC1 + ¾ FEC2
 - ΔPCV index = $\frac{1}{2}$ ($\Delta PCV1 + \Delta PCV2$)
 - Parasitism index = $\frac{3}{4}$ FEC index OPG + $\frac{1}{4}$ Δ PCV index

Key question: which criterion (weighing resistance and resilience)

Genetic correlations between resistance to GIN and traits in selection

Genetic correlations between FEC2 and traits in selection in Red-Faced Manech

The genetic correlations are low => selection for resistance to parasites will not jeopardise the selection on other traits

Correlation between parasitism index and current TMI

New Total Merit Index

Resistance to parasites included for the first time in the Total Merit Index in 2024 for the selection of the rams (weight of traits = desired compromise by the breeding organisation).

 Towards a more balanced selection objective.

 Genetic gain expected on mid-long term => integrated control of GIN is even more important.

Integrated control of GIN: optimize the toolbox

Eliminate the GIN

Rational use of anthelmintic drugs

(Targeted selective treatments, new molecules)
•tannin-rich plants

Sustainable control of worms

Dry up sources of contamination

•Better manage pasture

Increase the resistance /resilience of the host

- Vaccination, protein intake
- Genetic resistance

ICAR guidelines?

- Different ways to phenotype resistance / resilience to parasites (experimental vs natural infection)
- Other phenotypes to assess resistance / resilience
- Deliverable of SMARTER project: recommendations to phenotype resilience (including resistance/resilience to parasites
- Objective of Sheep-Goat-Camelid WG: include these recommendations into a new section of ICAR guidelines

Breeding for resistance to parasites in French dairy sheep: towards an increase in resilience and sustainability of sheep dairying

Thank you for your attention!

Work funded by:

Is the protocol relevant and justified? (2/2)

- Ram resistance evaluated in breeding centre is transmitted to its offspring raised on farm, on pastures (Red-Faced Manech breed)
 - Daughters born from resistant rams have FEC twice lower than daughters born from susceptible rams
 - Proportion of daughters with low FEC excretion higher in daughters born from resistant rams than daughters born from susceptible rams

Source : Aguerre et al, 2018