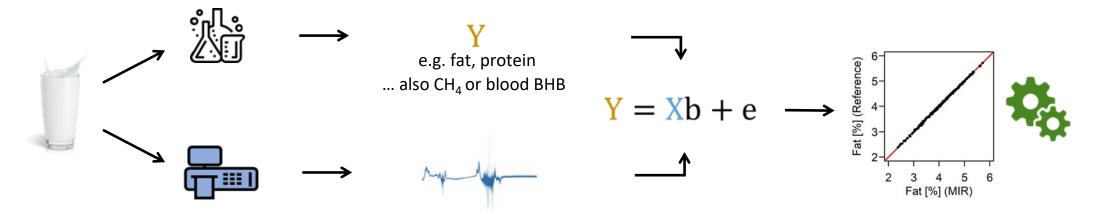


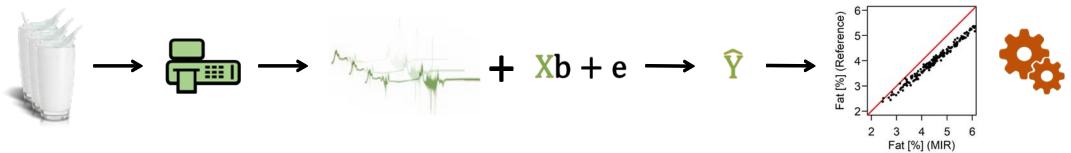
- ICAR Conference 2024 - Bled, Slovenia

Daily standardization of milk mid-infrared spectra in a comprehensive regression model framework considering animal related data

A. Mensching¹, J. Braunleder¹, E. Bohlsen², S. Schierenbeck¹, and R. Reents¹


-00000

¹ Vereinigte Informationssysteme Tierhaltung w.V. (vit)


² Landeskontrollverband Niedersachsen

MIR spectrometry and its challenges

<u>Set her</u> imstrumment, (secondeschipophedry best chéluturho et itertainiculornen d...)

-0000

MIR spectrometry and its challenges

General instrument effects

- Constructional differences
 - Wavenumber range and number
 - Cuvette material (CaF₂ or diamond)
 - Marginal deviations during production

Temporal instability or deviations

- Environmental effects like Temperature and humidity
- Technical wear and component changes
- Mechanical or electronic effects (sensor drift)

Wang et al. (1991):

Multivariate Instrument Standardization

Nieuwoudt et al. (2021): Monitoring of Instrument Stability

Compensation approaches so far

Post measurement correction of predictions:

 Slope/intercept correction using check samples ('standard milk') with known reference values

Only applicable for known reference values!

Spectral standard

Manufacturer's o

Standardization

FOSS standardization

, But so far only monthly or in ^{even} larger time intervals! to Grelet et al. (2015)

t al. (2017)

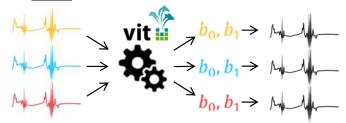
≰EMR) according

Retroactive standardization according

Enables the use of various models

The concept of the vit-standardization

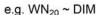
What can the observed variance of raw spectra be attributed to?

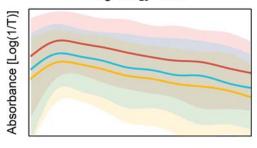

Milk main components (fat, protein, lactose)

Aim: Quantify and eliminate variance related to

general and temporal instrument effects

How?: Using a framework of regression models on DHI samples considering


- •Slope/intercept-corrected laboratory values
- •Data on sample origin like DIM and parity of the cow
- •Information on the instrument and time of analysis
- → Instrument-wise <u>daily</u> standardization coefficients



General and temporal instrument effects

Other

Further associations to other available information (e.g. DIM of the cow)

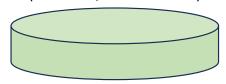
DIM [d]

Material and methods

All data were provided by the LKV Niedersachsen

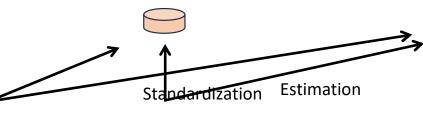
•Period: 01/2022 to 06/2022

Primary breed: Holstein (92%)


•5 FOSS instruments (2 x MilcoScanTM 7 RM, 3 x MilcoScanTM FT+)

Routine DHI samples

(n = 2.3 M, 5 instruments)


Estimation of standardization coefficients

Triple analysed DHI samples

(n = 5.3 k of 7 farms x 3 instruments)

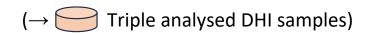
Check samples

(n = 61.0 k, 5 instruments)

Fat (lab) =
$$Xb + e \rightarrow MIR raw$$

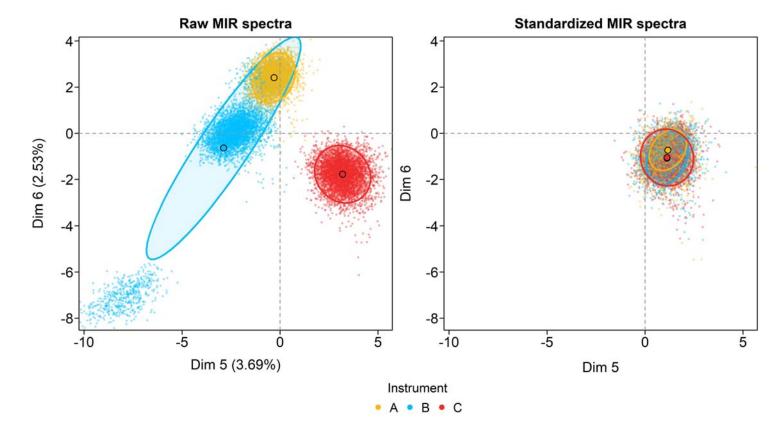
Fat (lab) = $Xb + e \rightarrow MIR standardized$

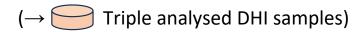
Milk fat as an example trait for demonstration purposes


<u>Analysis</u>

- I. MIR raw vs. MIR standardized
- II. Estimability of fat during calibration

III. Estimability of fat over time

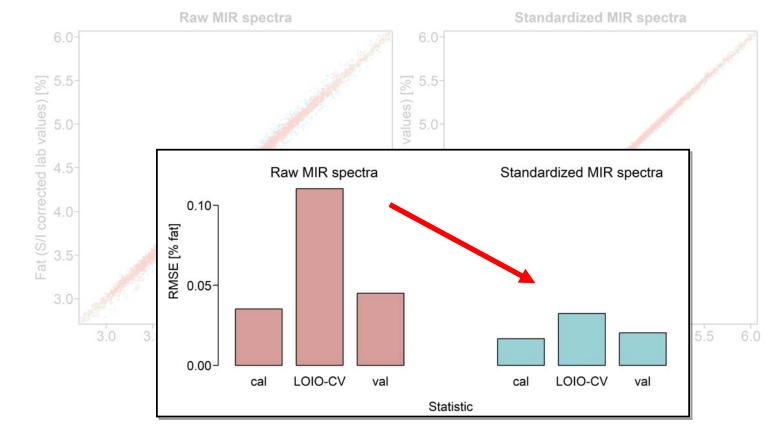

Results I: MIR raw vs. MIR standardized



Principal Component Analysis

- •n = 4,471 per instrument
- •212 of 1,060 wavenumbers
- → Untreated absorbance values
- \rightarrow 1st gap derivative

Results II: Estimability of fat



Background information

- Splitting of the data
 - 80% calibration, 20% validation
- Separate fat models for raw and standardized spectra
- •PLS-regression model properties
 - 1st gap derivative
 - 512/1,060 WN
 - n = 6 latent variables

S/I corrected lab values vs. MIR based estimations

-0000

23.05.2024

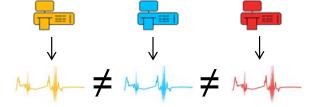
Results III: Estimability of fat over time

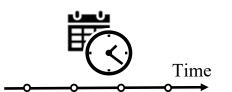
Background information

- •n = 53.5 k (balanced over 5 instruments)
- •Weekly changed 'North German Standard Milk'
 - Correspond to bulk milk samples
 - Small range with 3.86 to 4.27% fat

Remark

Check samples were <u>neither</u> used for standardization <u>nor</u> for fat model calibration!

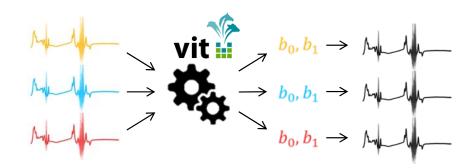




Summary and conclusion

- MIR spectrometric measurements are often impacted by
 - general instrument effects and
 - within instruments over time

- Daily vit-standardization demonstrates
- A harmonization of MIR spectra across machines and over time
- An improved ability for the estimation of fat compared to the use of raw spectra
- Almost similar accuracy as of slope/intercept corrected laboratory fat values
- Further advantages
- Frequent standardization possible, e.g. <u>daily</u>
- No need for common milk samples
- No additional workload for the laboratories
- High potential for the provision of best possible MIR-based predictions as input for
 - genomic evaluations
 - herd management tools



23.05.2024

Outlook

- In the meantime ...
- Adaptation of the vit-standardization so that it can handle daily incoming data
- A first MIR-based tool for monitoring of ketosis on routine DHIdata is active for > 3000 farms
- Comparison with other standardization strategies within the ICAR ExtraMIR project
- Provision of MIR-based predictions as phenotypes for breeding purposes
- Use of vit-standardization coefficients for the qualitative monitoring of spectra?
- Applying the method on
- bulk milk samples
- data from other regions and other breeds
- spectra from instruments of other manufactures

Thank you for your attention!

23.05.2024