Association of individual cow milk fatty acid proportion and variance with milk production

Malia J. Caputo¹, Asha M. Miles², Jay Mattison³, Steven J. Sievert³, Xiao-Lin Wu^{1,4}, Ransom L. Baldwin VI², Javier Burchard¹, João Dürr¹

¹ Council on Dairy Cattle Breeding, Bowie, MD; ² USDA Animal Genomics and Improvement Laboratory, Beltsville, MD; ³ National Dairy Herd Information Association, Fitchburg, WI; ⁴ Department of Animal and Dairy Sciences, University of Wisconsin, Madison, WI

United States Milk Testing

- 3.9M of cows (41.9%) on DHI testing
- > 90% of cows sampled at one milking, once monthly

United States Milk Testing

Milk Fatty Acid Origins

High effective fiber

Preformed Fatty Acids ≥ C18 (from the diet or body fat reserves) Body weight loss Low energy diets High fat diets

Woolpert et al., 2016; Barbano et al., 2018; Santschi, 2019

Lactation Factors Project

• Re-evaluate projection factors and update yield trait predictions

Lactation Factors Project

Dataset

- 2,400 cow 3x Holstein herd
 - Monthly sampling 40.8 kg/d one milk sample Weekly sampling MID/LATE LACTATION all milkings within a day 120 DIM EARLYLACTATION • 82,071 milk samples 0 DIM 4,825 cow-lactations • 3,518 unique cows

Objective

- 1. Identify associations of morning milking de novo and preformed fatty acids with:
 - Test day yield
 - 305 day cumulative yield
- Test day energy corrected milk
- 2. Identify if the variance of morning milking de novo and preformed fatty acids are associated with lactation yield

Methods

- 3 lactation stages
 - First milk test (30 ± 3 DIM)
 - Peak milk test (68 ± 30 DIM)
 - Mid-lactation milk test (100 ± 3 DIM)

Methods

- Mixed linear model (Imer; R 4.3.1)
 - **Fixed effects**: fatty acid proportion, parity (binary), their interaction, day in milk
 - Random effect: month of sample

Fatty Acid Units

De novo: Test Day Milk

First Milk Test Peak Milk Test Mid-Lactation Milk Test De novo Fatty Acid, % of Fat De novo Fatty Acid, % of Fat De novo Fatty Acid, % of Fat

De novo: 305 Day Cumulative Milk Yield

De novo: Energy Corrected Milk

Preformed: Test Day Yield

Preformed: 305 Day Cumulative Milk Yield

Preformed: Energy Corrected Milk Yield

Fatty Acids Summary

Variable	De novo Fatty Acid		Preformed Fatty Acid	
Test Day Yield	-		1	
305 Day Cumulative Milk Yield	Early & Peak		1	
Energy Corrected Milk Yield	Early Lactation	Mid-Lactation	Early & Peak	Mid- Lactation

Objective

- 1. Identify associations of morning milking de novo and preformed fatty acids with:
 - Test day yield
 Test day energy correcte
 - 305 day cumulative yield milk
- Test day energy corrected
 milk
- 2. Identify if the variance of morning milking de novo and preformed fatty acids are associated with lactation yield

Variation in Fatty Acids Across Lactation

Methods

- For de novo and preformed:
 - Fit individual cow Wilmink lactation curve
 - Deviance = observed predicted value
 - Variance = log[Variance(Deviance)]

Variation in De novo Fatty Acids

Methods

- Mixed linear model (Imer; R 4.3.1)
 - Fixed effects: fatty acid variance, parity

(binary), their interaction

• Random effect: month-year of calving

Fatty Acid Variance and Lactation Yield

Variable, kg	Estimate	SEM	<i>P</i> -Value
De novo			
28 Day Cummulative Yield	97.88	52.40	0.06
305 Day Cummulative Yield	1848.04	596.83	<0.01

Summary

- 1. Identify associations of morning milking de novo and preformed fatty acids with performance
 - Strong associations depending on parity and lactation stage
- Identify if the variance of morning milking de novo and preformed fatty acids are associated with lactation yield
 Higher variation of de novo associated with greater lactation yield
 - Further work into association with health, diet, etc. is ongoing

THANK YOU FOR YOUR ATTENTION

malia.caputo@uscdcb.com

