How spectrally representative are datasets used to build MIR-based predictive models ? A data-driven study.

C. Nickmilder¹, J. Leblois², O. Christophe³, C. Grelet³, Holicow Consortium, H. Soyeurt¹

Co-funded by the European Union

North-West Europe

¹Gembloux Agro-Bio Tech, University of Liège, Belgium ²Eleveo, Walloon Breeding Association, Ciney, Belgium ³Walloon Research Centre (CRA-W), Gembloux, Belgium

ICAR meeting, bled, May 2024

Co-funded by the European Union

North-West Europe

HoliCow

Can we applied all MIR equations on those data as they were built on different calibration set ?

+/- 63,000,000 spectra 6 countries 22 different breeds

Partner	Country	N° spectra	N° herds	N° cows	Nbreed
Elevéo	BEL	5,813,993	1,508	317,674	11
Qualitas	CHE	3,672,804	1,890	214,404	8
LKV BW	DEU	2,137,394	503	99,814	15
LKV NRW	DEU	2,142,664	2,388	260,941	17
LKV SH	DEU	8,882,066	2,142	432,598	16
Eliance	FRA	38,353,951	20,824	2,555,698	22
ICBF	IRL	27,610	153	10,663	12
CONVIS	LUX	1,248,653	556	34,629	8

ICAR meeting, Bled, May 2024

Spectral reduction

HoliCow

North-West Europe

ICAR meeting, Bled, May 2024

Initially proposed in ICAR meeting, 25th May 2023

Update for ICAR meeting, 20th May 2024

World representative spectral database (WRSD)

H. Soyeurt, C. Nickmilder, S. Franceschini, M. Whittaker, F. Dehareng, M. Bahadi, J. Leblois, L. Dale, K. Sanders, C. Grelet

àlle elevéo

LIÈGE université Gembloux Agro-Bio Tech

Use the scores on the PC

- Scores on the Principal Components
- Create a grid based on the scores on PC
- Only one iteration

More PCs \rightarrow More explained spectral variability

The code was written in Python in order to be run easily in each data center. Proximity index :
•Paste(round(PC1;0),round(PC2;0),round(PC3;0))

Raw Spectral DB :

•Foss Database (DB)

- Eleveo Spectral DB : ± 8,000,000 records
- Lactanet Spectral DB : ± 10,000,000 records
 Lactanet
- •Bentley Database:
 - LIC Spectral DB : ± 2,000,000 records
 - LKV-BW Spectral DB : ± 10,000,000 records

Proximity index based on 3 PCs

Final Selection :

•Foss Database

- Eleveo Spectral DB : **167,015** records
- Lactanet Spectral DB : **172,469** records

•Bentley Database:

- LIC Spectral DB : 81,080 records
- LKV-BW Spectral DB : **91,494** records

An article was written about the methodology and submitted to the Journal of Dairy Science

To conserve the information about the spectral **distribution in the studied cow population**, the frequency of the selected spectra is calculated

HoliCow

Visualisation of the full Holicow subset (DB1)

Volume drawn by the subset

Volume drawn by the calibration set (DB2)

ICAR meeting, Bled, May 2024

HoliCow

Data Cleaning

•Standardized Mahalannobis distance < 5

Cleaning	Holicow WRSD (DB1)	%kept
Raw	322,216	100%
Cleaned	275,593	85.53%

HoliCow

Cleaned Holicow subset

Volume drawn by the subset

Volume drawn by the calibration set

HoliCow

Without taken into account the density DB2 Volume = **0.12** * DB1 Volume

DB2 covers **99.64%** of the spectral variability of DB1 if we take into account the **density in the population**

→Some spectra are more present than others

→More important to be in the area in which the frequency of spectra is the higher.

HoliCow

Conclusions

- •WRSD method selects, as expected, outliers → data cleaning
- •Need to consider the **frequency** of each spectra to have a correct conclusion.
- •Even if the calibration set was limited, it has a variability that allow to cover the variability in the Holicow Database **→ FA equations can be applied**.

How spectrally representative are datasets used to build MIR-based predictive models ? A data-driven study.

C. Nickmilder¹, J. Leblois², O. Christophe³, C. Grelet³, Holicow Consortium, H. Soyeurt¹

Co-funded by the European Union

North-West Europe

¹Gembloux Agro-Bio Tech, University of Liège, Belgium ²Eleveo, Walloon Breeding Association, Ciney, Belgium ³Walloon Research Centre (CRA-W), Gembloux, Belgium

ICAR meeting, bled, May 2024

