

Reducing dairy cattle enteric methane emissions using rumen metagenome

Boris Sepulveda,

Oscar González-Recio,

Amanda Chamberlain, Benjamin Cocks, Jianghui Wang, Claire Prowse-Wilkins, Majid Khansefid, Ruidong Xiang, Leah Marett, Richard Williams, Joe Jacobs, Aser García-Rodríguez, Jose Jiménez-Montero &

Jennie Pryce

May 2024

The rumen microbiota is a target trait in genomic selection to reduce enteric methane emissions

Methane

A potent greenhouse gas

Energy lost

CH4 traits are sometimes weakly correlated but...

The nature of all traits is the same

Ruminal microbes

Variance components in methane emissions

- Cow genetics
- Rumen microbiome
- Interaction

Holobiont model

Saborío-Montero et al. (2021). Livestock Science, 250, 104538

Methane = $\mathbf{1}'\mu + \mathbf{Zg} + \mathbf{Um} + \mathbf{T(g \times m)} + \text{other effects} + \text{residual}$

Other effects

Fixed

- Cohort (11 levels)
- Dry matter intake
- Days in milk
- Energy corrected milk
- Daily body weight change during the experiment

Random

•Sniffer nested within farms (24 levels)

Fixed

- Lactation number (2 levels)
- Stage of lactation (3 levels)

Variance in enteric methane emissions

Prediction accuracy

Actual

(cross-validation within population)

•Australia: ~0.40

•Spain: ~0.20

Our proposed methodology

- Agrees with the trait's biology
 - Methane is not an intrinsic trait of cows
 - But a "trait" of the ruminal microbiome
- The role of genetics is modulating this microbiome
 - Consistent with the literature

Heritability and correlations

- For each microbial gene:
 - Heritability and breeding values with univariate GBLUP within population $\mathbf{microbial\ gene} = \mathbf{1}'\mu + \mathbf{Zg} + \mathbf{other\ effects} + \mathbf{residual}$
- Phenotypic correlation: correlation between raw phenotypes
- Genetic correlation: correlation between breeding values

Other effects

Fixed

- Cohort (11 levels)
- Dry matter intake
- Days in milk
- Energy corrected milk
- Daily body weight change during the experiment

Random

•Sniffer nested within farms (24 levels)

Fixed

- Lactation number (2 levels)
- Stage of lactation (3 levels)

Selection response

- 3 scenarios (Martínez-Álvaro et al. 2022. Commun. Biol, 5(1))
- 1. Directly selection against methane records only
- 2.Indirectly selecting on microbial genes only Selection index approach (Cameron, 1997). microbial genes with h^2 and $r_g \ge 0.20$
- 3. Combination of scenarios 1 and 2
- 30% to 1% of the population with the lowest emissions is selected

Response to selection - Australia

Response to selection - Spain

Methane records and Microbial genes

Agree with literature

communications

biology

ARTICLE

https://doi.org/10.1038/s42003-022-03293-0

OPEN

Bovine host genome acts on rumen microbiome function linked to methane emissions

Marina Martínez-Álvaro o ¹, Marc D. Auffret², Carol-Anne Duthie¹, Richard J. Dewhurst o ¹, Matthew A. Cleveland³, Mick Watson o ⁴ & Rainer Roehe o ¹ ™

Microbiome connect populations with different emission traits ...

... and can even connect dairy and beef

communications biology

ARTICLE

https://doi.org/10.1038/s42003-022-03293-0

OPEN

Bovine host genome acts on rumen microbiome function linked to methane emissions

Marina Martínez-Álvaro ⊙ ¹, Marc D. Auffret², Carol-Anne Duthie¹, Richard J. Dewhurst ⊙ ¹, Matthew A. Cleveland³, Mick Watson ⊙ ⁴ & Rainer Roehe ⊙ ¹≅

Methane records

Microbial genes

Methane records and Microbial genes

Conclusions

- Rumen microbiome explain most of the variation in methane emissions
- Genetics affects indirectly by modulating the microbiome
- The rumen microbiome could be a target trait to reduce emissions
- Microbiome could connect populations and emission traits
- Microbes do not replace emissions records. They are complementary.

Conclusions

- Rumen microbiome explain most of the variation in methane emissions
- Genetics affects indirectly by modulating the microbiome
- The rumen microbiome could be a target trait to reduce emissions
- Microbiome could connect populations and emission traits
- Microbes do not replace emissions records. They are complementary.

Before implementation

- The results need validation
 - Larger population
 - Commercial conditions
 - Multivariate models to estimate heritability and genetic correlations
- Effect of modulating microbiome on:
 - Other traits
 - Health

A global effort to validate a common core of ruminal features to reduce enteric methane emissions is required

Acknowledgment

Computational Biology Group

CSIC

ARC Training Centre in Predictive Breeding for Agricultural Futures

- The world's first centre dedicated to training the next generation of plant and animal breeders is being established at The University of Queensland
- The Centre consists of seven University Nodes and over 30 industry and government partners
- 38 PhD studentships and postdoctoral positions are available within the Centre and projects focus on 21 agriculturally important species/commodities
- Projects include a placement with our leading industry partners, access to short courses, and an opportunity to learn and apply cutting-edge technologies to help solve real world problems
- Recruitment will commence shortly email <u>predictivebreeding@uq.edu.au</u> to be part of this exciting new Centre!

Thank you

ARC Training Centre in Predictive Breeding for Agricultural Futures

- The world's first centre dedicated to training the next generation of plant and animal breeders is being established at The University of Queensland
- The Centre consists of seven University Nodes and over 30 industry and government partners
- 38 PhD studentships and postdoctoral positions are available within the Centre and projects focus on 21 agriculturally important species/commodities
- Projects include a placement with our leading industry partners, access to short courses, and an opportunity to learn and apply cutting-edge technologies to help solve real world problems
- Recruitment will commence shortly email <u>predictivebreeding@uq.edu.au</u> to be part of this exciting new Centre!

Theoretical accuracy

$$r_{\rm EMV} = \sqrt{\frac{N_P m^2}{N_P m^2 + P}}$$
 Ross and Hayes (2022). fgen, 13

Where (N_P) is the number of animals in the reference population with phenotype and metagenomics, m^2 is microbiability, and P is the number of ruminal features (KOs).

