

Identifying the "anonymous" cow Calculating resilience indicators in US Holstein cows using pen-level data

F.L. Guinan, R.H. Fourdraine, F. Peñagaricano & K.A. Weigel

ICAR Annual Meeting Bled, Slovenia

May 23rd 2024

Outline

1. Calculating consistency indicators

2. Resilience indicators

3. Resilience at the pen level

4. Conclusions

23

How do we identify the "anonymous cow"?

free"

1. Consistency

What is consistency?

"A level of performance that does not

vary greatly in quality over time."

Our Goal:

To achieve predictable performance in

unpredictable conditions

Oxford University Press

ICAR Annual Meeting, May 23rd, 2024, Bled, Slovenia

1. Consistency

Data

- Number of records:
 - 387 million individual daily milk weights
 - 82 million historical aggregated daily milk weights
 - 35 million test day records
 - 5.1 million health records
 - 3.2 million breeding records
- Number of herds: 312 herds in 37 states across the

U.S.

• Number of cows: 702,861

1. Consistency

1. Consistency

Guinan et al., 2023

Take home messages

- Consistent performance is heritable \rightarrow h² = 0.24
- Consistent cows → fewer health problems, increased
 longevity, more labor efficient
- Milk meter data \rightarrow Extracting value from data routinely generated on farm

"Trouble free, anonymous CAR"Annual Meeting, May 23rd, 2024, Bled, Slovenia

What is resilience?

The capacity to bounce back to normal functioning after

a perturbation OR maintain specific functions in the

face of change or stress"

Scheffer et al., 2018

Our Goal:

To first identify perturbations and then

calculate individual cows' response at the pen

2. Resilience indicators

- Can group demographics provide additional information for resilience indicators?
- Were all cows in the pen affected by the perturbation (feed, weather, system changes)?
- How are cows moved pens based on changes in production? i.e., sick pen

On a specified milking day within a particular pen of a specific herd, calculate the percentage of cows with a negative residual between observed and expected daily milk weight Identify periods of 5 consecutive days in a pen where >= 60% of the cows have negative residuals

Within herd pen milking date contemporary group, correct the residual milk production by the expected milk production

% Milk Loss

Mean residual milk Mean expected milk * 100

pen of a specific herd, calculate the percentage of cows with a negative residual between observed and expected daily milk weight

pen where >= 60% of the cows have negative residuals

group, correct the residual milk production by the expected milk production

Mean residual milk * 100 Mean expected milk

(Adriaens et al., 2020) ICAR Annual Meeting, May 23rd, 2024, Bled, Slovenia

day within a particular consecutive days in a pen of a specific herd, pen where >= 60% of calculate the percentage of cows with a negative residual between observed and expected daily milk weight

the cows have negative residuals

date contemporary group, correct the residual milk production by the expected milk production

Mean residual milk * 100 Mean expected milk

On a specified milking Identify periods of 5 day within a particular consecutive days in a pen of a specific herd, pen where >= 60% of calculate the percentage of cows with a negative residual between observed and expected daily milk weight

the cows have negative residuals

Within herd pen milking date contemporary group, correct the residual milk production by the expected milk production

3. Resilience at the pen level

Response to Challenge

Milking Date

ANIMAL & DAIRY SCIENCES University of Wisconsin-Madison

- Lactation 1 Holstein cows
- 2018 2023
- >= 25 cows per herd-pen-milking_date

% Milk Loss = AFC + DIM + herd-pen-milking date + cow + e

				$cow \sim N(0,$		
% residuals negative	Herds (n)	Cows (n)	Herd-pen- milking_date (n)	$\sigma^2{}_g$	σ^2_e	h²
60	161	81,245	1,235	0.40 (0.12)	38.50 (0.22)	0.01 (0.003)
70	129	39,240	527	1.03 (0.27)	37.73 (0.36)	0.03 (0.007)
80	79	14,245	170	4.26 (0.96)	37.72 (0.93)	0.10 (0.02)
90	21	1,719	26	23.77 (8.07)	40.43 (7.13)	0.37 (0.12)

Take home messages

- Resilience is heritable (0.01 0.37)
- Cows respond differently to perturbations at the pen level
- Resilience is expressed in challenging conditions

Thank you! fguinan@wisc.edu