

Evaluating Farm Management Practices: A semi-supervised clustering approach to assess the impact of technologies

Caspar Matzhold¹, Katharina Schodl¹, Franz Steininger¹, Peter Klimek², Christa Egger-Danner¹

¹ZuchtData EDV-Dienstleistungen GmbH, Dresdner Str. 89, 1200 Vienna, Austria
²Complexity Science Hub Vienna, 1080 Vienna, Austria

Introduction

Background:

- •Diversity of data and information available on farms is continuously increasing.
- Animal health and welfare is influenced by many factors.

Objective of Research:

- •Integration of diverse data sources.
- •Farm Management ——Health
- •To gain insights that will assist in:
 - Planning of diverse farm management strategies that will improve bovine health.
 - Identifying the most effective management style for a specific strategy through benchmarking.

Challenges:

- Access & Cleaning & Validation of diverse data sources.
- •Development of a methodological approach to transform high-dimensional data into knowledge on clusters, representing a certain management style.

Approach Description		Description	Challenges and Opportunities			
	Supervised	Knowledge-Driven: existing knowledge to identify clusters	Distinctive clusters e.g., high discriminatory powerPotential oversight of novel feature interactions			
	Semi- Supervised	Combination of knowledge- based feature selection with unsupervised clustering methods	 Feature-selected distinctive clusters that exhibit high discriminatory power Potential novel cluster formation is anticipated 			
	Un- supervised	Data-driven: Machine learning methods to identify patterns / clusters within the data	Uncover new patterns of similarity (Clusters)Less accurate result due to low discriminatory power			

Semi-Supervised: Key-Feature-based Clustering Approach

What is a key-feature?

−A key-feature is known to have a significant impact on farm management.

Milking System AMS: Yes/No

Altitude: High/Low

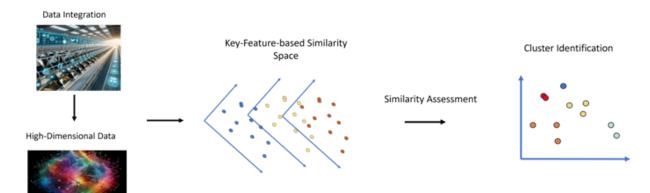
Why should we use it?

- -Reduce dimensionality: Define similarity spaces for effective cluster extraction.
- -Increase discrimination power: Improve capability to distinguish between clusters.
- -**Targeted analysis:** To define the pattern for the similarity measurements allows for more detailed analysis of the effects of features of interest, such as sensor systems.

How to use it?

Methodology: 1) Cluster Extraction

1. Define a Set of Key-Features


Spanning the similarity space.

2. Assess Similarity

 Similarity is assessed among the key-features using similarity measurements such as Cosine distance for numeric features and Jaccard distance for binary features.

3. Cluster Identification:

 The obtained vectors of similarity are then used as inputs for the unsupervised clustering algorithm HDBSCAN (Hierarchical Density-Based Spatial Clustering of Applications with Noise) to group the clusters into sets of similarity.

Methodology: 2) Cluster Evaluation

1. Disease Risk Assessment:

- Disease risks are analyzed by calculating incidence rates (R) and odds ratios (OR) for diseases across clusters.
- A disease risk is defined as the probability of a diagnosis occurring.

2. Pertinent Feature Evaluation:

 Clusters are characterized using z-scores for each feature, assessing statistical significance with ttests or Fisher's exact test.

Cluster Evaluation Applied Within and Between Cluster Groups:

- Inter-Cluster Analysis: Analyze trends across different cluster groups to discern overarching patterns.
- Intra-Cluster Analysis: Investigate interactions of features within similar clusters to delve into impacts beyond key-features.

Data

1) Farm dataset:

- 3.284 (8.000) farms described by **80 Hot-Encoded** Features describing:
 - Feeding-, Milking-, Housing-Systems,...
 - Husbandry Management, Pasture Strategies,...
 - Technology Applications like AMS and Sensor System,...

Farm Dataset	Counts
Farm	3.284
Cow	98.037
Feature	80

2) Health dataset:

- Extracted from the national cattle registry, comprises veterinary diagnoses and documented events observed during calving.
- Incidence Rates are calculated by summing the **unique counts** of diagnoses observed **on a farm over a 2-year** period.
- Diagnoses were categorized into 3 groups:
 - Udder diseases (Chronic and Acute Mastitis)
 - 2. Fertility disorders (Anestrous, Uterus Inflammation, Ovarian cysts)
 - 3. Milk fever (*Hypocalcemia*)

Diagnose Group	Unique Counts over 2 year
Udder diseases	23.923
Milk fever	11.294
Fertility disorders	39.087
Sum:	74.304

Study - Objective

Demonstrate Clustering Approach:

Show the effectiveness of a key-feature-based clustering method to extract and evaluate the impact of varied management practices on bovine health.

Focus on Technology Impact:

Assess the influence of Automatic Milking Systems (AMS) and sensor technologies on bovine health.

Key-Features

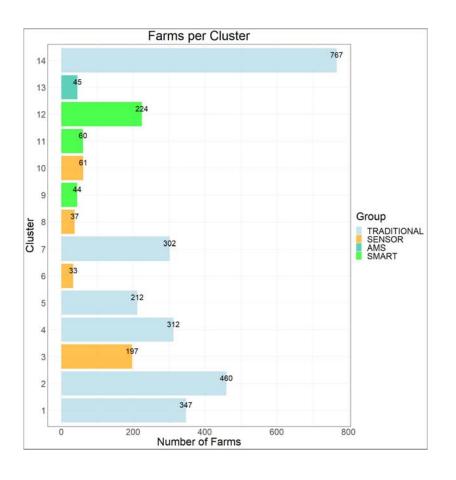
Herd size

Milk yield average per year

Altitude

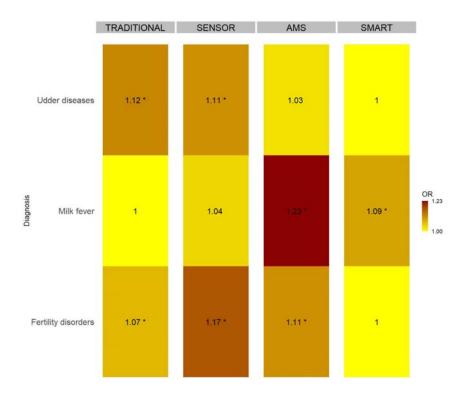
Pasture

Access to open areas


Free-stall housing system

Automatic Milking System

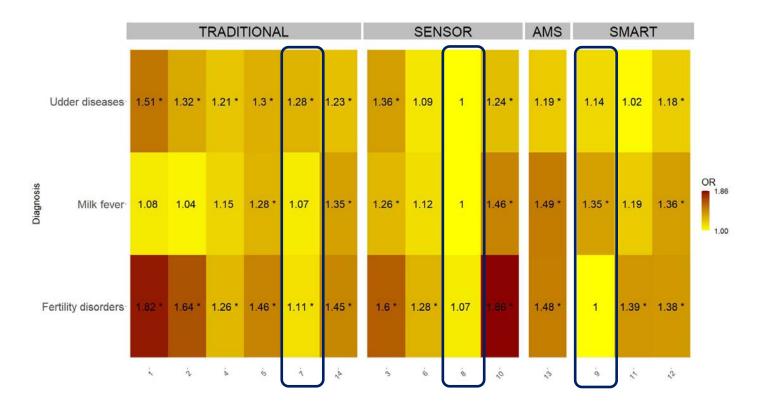
Sensor


Results

- •Extracted 14 distinct farm management clusters.
- •Assignments: 3.101 of 3.284 farms were successfully assigned to a cluster.
- •Categorized based on **technological usage** into 4 groups:
 - TRADITIONAL
 - SENSOR
 - AMS
 - SMART (Sensor & AMS)

Inter-Cluster Results:

Grouped Disease Risks: Displayed as heat maps with yellow indicating the lowest disease incidence rate and red indicating the highest risk (Odds Ratio)

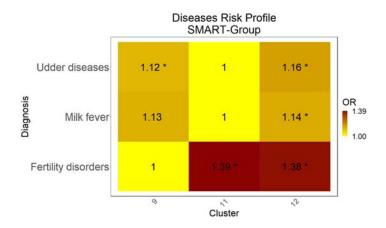


> On a group level:

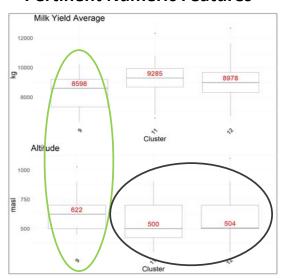
- We find a trend towards lower disease risks in technologically advanced farms, especially in SMART farms combining AMS with sensor systems.
- SMART lowers incidence rates for udder diseases and fertility disorders.
- Traditional farming lowers incidence rate for milk fever.

Inter-Cluster Results:

Disease Risk: Displayed as heat maps with yellow indicating the lowest disease incidence rate and red indicating the highest risk (Odds Ratio)


- ➤On a cluster level:
- •High variation in disease risks across and within clusters.
- ➤ Pertinent Features Analysis of healthy clusters reveals that the feature combination
- organic farming and
- more freedom for movement

has a positive impact on bovine health.


Intra-Cluster Results: SMART Group Analysis

Pertinent Numeric Features

Pertinent Binary Features

Cluster 11	Cluster 12	Cluster 9
Access To Open-Air Areas: Always	Access To Open-Air Areas: No	Pasture
Open-Air Floor: Paved	Management: Conventional	Pasture: Seasonal
Manure Removal: Manual	Summer: Corn Silage	Management: Organic
Calves: Outdoor	Manure Removal: Automatic	Access To Open-Air Areas: Always
DHI:Milk Yield Average	Access To Open-Air Areas: Partial	Open-Air Floor: Paved
Alley Flooring: Slats	Barn Design: Outdoor Climate House	Summer: No Silage
Calving Box: With Sick Animals	Concentrates: PMR	Altitude
Ventilation System: Lying Area	Forage Type: Mixed Ratio	Multiple Feeding Places
Sick Bay: Together With Calves	Sick Bay: No	Concentrates: TMR
Ventilation System: Feeding & Lying A	calves: Outdoor Climate House	Claw Trim: Tipping Crush
Concentrates: Individual	Ventilation System: No	Forage Type: Template
Claw Trim: Professional	Feed Pusher: Yes	Calves: Warm Stable
Lure Feed Concentrates	Calving Box: Separate	Ventilation System: No
Claw Trim: Standing	Alley Flooring: Solid Concrete	Milking Take-Off: Yes
Deep Bed Cubicles	Management: GMO-Free Feeding	High Bed Cubicles
Management: Conventional	Claw Trim: 3 Times A Year	Claw Trim: Low To No Training
Concentrates: TMR	Cooling System: No	
Ventilation System: Feeding Area		
Concentrates: Transponder Only		

Table 1. Intra-Group Analysis: Pertinent features comparison. Significant positive features of each cluster are arranged in descending order of importance, as determined by their z-values. Features with high z-scores are considered as pertinent features that characterize a particular cluster.

Conclusion

- We presented a **semi-supervised** clustering approach based on **key-features** that enables differential risk analysis between and within groups of clusters.
- We demonstrated how the approach can be used to **study the influence of specific features**, such as **technological systems**, on bovine health.
- Inter-Cluster Analysis **reveals trend** towards:
 - Lower disease risk for farm-integrated technological systems.
 - Lower disease risk, especially for fertility disorders, for an organic farm management that provides more freedom for movement.
- Intra-Cluster Analysis of the SMART-Group reveals effects beyond key-features:
 - Differences in heat, feeding, and pasture management are associated with variations in disease risks.

Practical Relevance

Improving Animal Health and Welfare:

- Trends Analysis: Understanding trends supports better planning and decision-making in livestock management.
- Benchmarking: Identifying differences between similar management styles can aid in identifying the best management style.

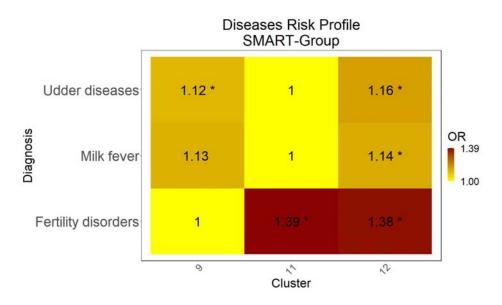
Complexity of Disease Management:

- There is no universal best farm management strategy for all diseases, as disease risks result from several interacting factors.
- Farm Management Disease Risk

Our Key-Feature-Based Clustering Approach:

 Offers a flexible framework to gain insights into trends and differences between similar management styles, enhancing overall farm efficiency and animal health.

Thank You!



BitKuh

Intra-Cluster Results: SMART Group Analysis

Disease Risk: Displayed as heat maps with yellow indicating the lowest disease incidence rate and red indicating the highest risk (Odds Ratio)

Pertinent Features

Organic vs. Conventional Farms:

Organic farms (Cluster 9) show decreased occurrence of fertility disorders due to:

- Less intensive milk production.
- No corn-silage feeding.
- More freedom for movement.

Conventional Farm Comparison at similar altitude:

Cluster 11 shows an overall decreased disease risk compared to Cluster 12, that can be attributed to:

- Cooling Systems: Reduces heat stress, lowering disease risks.
- Outdoor Access: Improves welfare and health.
- Concentrates Individual: Feeding: Meets specific nutritional needs, enhancing health.

Background:

- •Diversity of data and information available on farms is continuously increasing.
- •Animal health and welfare is influenced by many factors.

Objective of Research:

- Integration of diverse data sources.
- •Farm Management ______Health
- •Provide benchmarking and targeted decision support aiming to improve farm efficiency and bovine health.

Challenges:

- Access & Cleaning & Validation of diverse data sources.
- •Development of a methodological approach to transform highdimensional data into knowledge on groups of similarities, representing a cluster.

