

SCIENCE AND FOR EDUCATION FOR SUSTAINABLE LIFE

Gigacow, automated data recording

Tomas Klingström, coordinator for SLU Gigacow. +4672-503 19 24 tomas.klingstrom@slu.se

Gigacow

Summary stats SLU Gigacow

	2023-05-03	2024-04-29	Increase	# Animals	# Animals	Increase
Total				17 214	19 673	14 %
Milking						
events	3 589 973	5 164 866	44 %	2 706	3 105	38 %
Robot						
milkings	1 338 560	2 059 780	54%	1 088	1 523	40 %
Activity data	431 577	620 524	44 %	2 165	2 357	25 %
Feed days	2 907 939	5 011 588	72 %	3 170	4 211	77 %

From sensitive to robust athlete

The project is using variation observed among high producing individuals to identify successful strategies of coping with heat stress and evaluate the possibilities for including these traits in a breeding program.

Timeline

	2020	2022	2023	Current	
Year	Pilot 1	Pilot 2	Pilot 3	Research project	
Service provided	Weather data validation	Weather data DelPro data	Weather data DelPro data Multi year	Weather data DelPro data Multi year Calving data Disease data	

Genotype data

Evaluating Locally Measured Weather and Weather Services by Karolina Hedberg, Rebecka Homman & Johan Rideg (2021)

Spring Summer Fall Winter (n = 6621)(n = 6624)(n = 6552)(n = 6504)= 0.9173*x + 1.4443 y = 0.9719*x + 0.3628 = 0.9643*x + 0.7213 y = 0.9931*x + 0.2615 Temperature (°C) LantMet -10 -10-10-10-20 -20-20-20-20 -10-20-10-20 -10-20 -10MESAN (AROME) MESAN (AROME) MESAN (AROME) MESAN (AROME) $y = 0.9408 \times x + 5.191$ y = 0.9287*x + 6.3196 y = 0.8783 * x + 12.9284y = 0.9337 * x + 4.8629Relative humidity (%) LantMet MESAN (AROME) MESAN (AROME) MESAN (AROME) MESAN (AROME)

Weather data validation (pilot 1)

Impact of weather factors on the productivity of dairy cows by Robert Ginlund & Minjia Zhou (2023)

Impact of heat stress at a Swedish dairy farm (pilot 2)

Regression Analysis

Milk yield vs temperature for Farm 1

First order linear regression indicates how milk yield (kg) is affected by an increase in temperature (°C).

Form nome	All data		Summer		Top producers	
Farminame	kg	kg/°C	kg	kg/°C	kg	kg/°C
Farm 1	33.97	-0.05	35.99	-0.20	39.32	+0.04
Farm 2	33.94	-0.16	36.50	-0.15	43.17	-0.24
Farm 3	37.66	-0.03	37.58	-0.05	43.88	+0.07
Farm 5	37.00	+0.02	41.13	-0.21	45.47	-0.10
Farm 7	40.09	-0.01	39.55	+0.03	47.82	-0.05
Farm 8	33.09	-0.11	36.01	-0.31	39.39	-0.21
Farm 9	29.26	-0.02	32.72	-0.20	37.83	-0.06

Evaluating Resilience to Heat Stress among Dairy Cows in Sweden by Joakim Svensson & Axel Englund (2024)

Capturing heat stress at a Swedish dairy farm (pilot 3)

Evaluating Resilience to Heat Stress among Dairy Cows in Sweden by Joakim Svensson & Axel Englund (2024)

Individual impact (pilot 3)

Confounding factors!

Health events (integrating a separate database)

Heat stress vs mastitis vs something?

One project contribute to many others

Phenotype – Heat tolerance

This project — Phenotype – Pregnancy loss

Between farm variation

Impact of mastitis

Resilience indicators

Microbiome variation

Lactation length adjustments

iDDEN integration

Short-term aim – Integrative cow data model

Repeated recordings

- Milkings
- Activity
- Feed
- Health
- Events recording

Long-term aim - Westworld for cows

Current organisation

Lena Mari Martin Johnsson Tamminen Research partner Research partner

Tomas Klingström Researcher/ Coordinator Ingemar Ohlsson Researcher/ P.I Programmer

Ivan CleggPatricia GullstrandMarcDatabase developer ResearcherSysa

d Marcus Pedersen Sysadmin (Interbull)

Great thanks to Freddy Fikse, Karl-Johan Petersson, Natalie von der Lehr, Hans Persson, all our farmers and collaborators at SLU, Växa and NAV

Deparment of Animal Biosciences

CSI:DT website

SLU

Lars Rönnegård

Hector Marina

Sreten Andonov